分析 (1)連結(jié)AO,由SB=SC得SO⊥BC,由余弦定理計算AO,根據(jù)勾股定理的逆定理可證AO⊥BC,于是BC⊥平面SAO,得出SA⊥BC;
(2)由側(cè)面SBC⊥底面ABCD得SO⊥平面ABCD,即SO為棱錐的高,由勾股定理計算DO,由于sin∠SDO=$\frac{\sqrt{11}}{11}$,得出SO.
解答 證明:(1連結(jié)AO,
∵SB=SC,O是BC中點(diǎn),∴SO⊥BC.
∵AB=2,BO=$\frac{1}{2}BC$=$\sqrt{2}$,∠ABC=45°,
∴AO=$\sqrt{A{B}^{2}+O{B}^{2}-2AB•OBcos45°}$=$\sqrt{2}$.
∴AO2+OB2=AB2,∴OB⊥OA,
又AO?平面SAO,SO?平面SAO,AO∩SO=O,
∴BC⊥平面SAO,∵SA?平面SAO,
∴SA⊥BC.
解:(2)∵SO⊥平面ABCD,
∴∠SDO是SD與平面ABCD所成的角,SO⊥OD.
∴sin∠SDO=$\frac{\sqrt{11}}{11}$,
∴tan∠SDO=$\frac{SO}{OD}$=$\frac{\sqrt{10}}{10}$.
∵AO⊥BC,AD∥BC,
∴AD⊥AO,
∴OD=$\sqrt{A{O}^{2}+A{D}^{2}}$=$\sqrt{6}$.
∴SO=OD•tan∠SDO=$\frac{\sqrt{15}}{5}$.
∴VS-ABCD=$\frac{1}{3}$S四邊形ABCD•SD=$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×2×\frac{\sqrt{15}}{5}$=$\frac{\sqrt{30}}{15}$.
點(diǎn)評 本題考查了線面垂直的判定,棱錐的體積計算,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{6}$ | C. | 3 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{4}+\frac{y^2}{8}=1$ | B. | $\frac{x^2}{12}+\frac{y^2}{16}=1$ | C. | $\frac{x^2}{8}+\frac{y^2}{4}=1$ | D. | $\frac{x^2}{16}+\frac{y^2}{12}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4條 | B. | 3條 | C. | 2條 | D. | 1條 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 3 | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com