分析 由漸近線方程為y=±$\frac{1}{2}$x,可設(shè)雙曲線的方程為y2-$\frac{1}{4}$x2=λ(λ≠0),代入點(2,2),解方程即可得到所求雙曲線的方程.
解答 解:由一條漸近線方程為y=±$\frac{1}{2}$x,
可設(shè)雙曲線的方程為y2-$\frac{1}{4}$x2=λ(λ≠0),
代入點(2,2),可得λ=4-$\frac{1}{4}$×4=3,
即有雙曲線的方程為y2-$\frac{1}{4}$x2=3,
即為$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{12}$=1.
故答案為:$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{12}$=1.
點評 本題考查雙曲線的方程的求法,注意運用雙曲線的漸近線方程和雙曲線的方程的關(guān)系,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$ | B. | $({-∞,-\frac{{\sqrt{3}}}{3}})∪({\frac{{\sqrt{3}}}{3},+∞})$ | C. | $[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$ | D. | $({-∞,-\frac{{\sqrt{3}}}{3}]∪[\frac{{\sqrt{3}}}{3},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{\frac{11}{3}}$-$\frac{{y}^{2}}{11}$=1 | B. | $\frac{{x}^{2}}{2}$-y2=1 | C. | $\frac{{y}^{2}}{\frac{11}{3}}$-$\frac{{x}^{2}}{11}$=1 | D. | $\frac{{y}^{2}}{11}$-$\frac{{x}^{2}}{\frac{11}{3}}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{3}{4}$,$\frac{5}{3{e}^{2}}$] | B. | (-1,$\frac{3}{2e}$] | C. | (-$\frac{3}{2e}$,-$\frac{5}{3{e}^{2}}$] | D. | (-$\frac{3}{4}$,-$\frac{5}{3{e}^{2}}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com