一工廠生產A,B,C三種商品,每種商品都分為一級和二級兩種標準,某月工廠產量如下表(單位:件):
A B C
一級 100 150 400
二級 300 450 600
(Ⅰ)用分層抽樣的方法在C種商品中抽取一個容量為5的樣本.將該樣本看成一個總體,從中任取2件商品,求至少有1件一級品的概率;
(Ⅱ)用隨機抽樣的方法從B類商品中抽取8件,經檢測它們的得分如下:9.4、8.6、9.2、9.6、8.7、9.3、9.0、8.2.把這8件商品的得分看成一個總體,從中任取一個數(shù),求該數(shù)與這8個數(shù)的平均數(shù)之差的絕對值不超過0.5的概率.
考點:古典概型及其概率計算公式,分層抽樣方法
專題:概率與統(tǒng)計
分析:(1)先計算出抽樣比,進而計算出5個樣本的分布情況,進而求出從中任取2件商品的情況總數(shù)和至少有1件一級品的情況個數(shù),代入古典概型概率計算公式,可得答案.
(2)先計算出這8個數(shù)的平均數(shù),進而分析出滿足條件抽出數(shù)據(jù)與這8個數(shù)的平均數(shù)之差的絕對值不超過0.5的情況個數(shù),代入古典概型概率計算公式,可得答案.
解答: 解:(1)設所抽樣本中有m個一級品,因為用分層抽樣的方法在C類中抽取一個容量為5的樣本.
所以
400
1000
=
m
5
,解得m=2,
也就是抽取了2件一級品,3件二級品,分別記作S1,S2;B1,B2,B3,
則從中任取2件的所有基本事件為:
(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),
(S2,B3),(S1,S2),(B1,B2),(B2,B3),(B1,B3)共10個,
其中至少有1件一級品的基本事件有7個:
(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),
所以從中任取2件,至少有1件一級品的概率為
7
10
.----------------------(5分)
(2)樣本的平均數(shù)為
.
x
=
1
8
(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.
那么與樣本平均數(shù)之差的絕對值不超過0.5的數(shù)為9.4,8.6,9.2,8.7,9.3,9.0這6個數(shù),
總的個數(shù)為8,
所以該數(shù)與樣本平均數(shù)之差的絕對值不超過0.5的概率為
6
8
=0.75.----------------------------------(10分)
點評:本題考查的知識點是古典概型概率計算公式,其中熟練掌握利用古典概型概率計算公式求概率的步驟,是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

命題“?x∈(0,+∞),x3-x2+1≥0,”的否定是( 。
A、?x∈(0,+∞),x3-x2+1≤0
B、?x∈(0,+∞),x3-x2+1≤0
C、?x∈(0,+∞),x3-x2+1<0
D、?x∈(0,-∞),x3-x2+1<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察下面一組組合數(shù)等式:
1•
C
1
n
=n•
C
0
n-1
;
2•
C
2
n
=n•
C
1
n-1

3•
C
3
n
=n•
C
2
n-1


(Ⅰ)由以上規(guī)律,請寫出第k(k∈N*)個等式并證明;
(Ⅱ)隨機變量X~B(n,p),求證:EX=np.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

盒中有6只晶體管,有2只次品,4只合格品,從中任取2次,每次一只;
(1)若取后放回,求取到的2只晶體管中恰有一只合格品的概率是多少?
(2)若取后不放回,求取到的2只晶體管中至少有一只合格概率是多少?
(3)若取后不放回,求取到的2只晶體管中至多有一只合格概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個左、右焦點分別是F1(-
2
,0),F(xiàn)2
2
,0),且經過點A(
3
2
,
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C上兩點M,N使
OM
+
ON
OA
,λ∈(0,2),求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2+x-6≥0},B={x|x2-6x+5<0},C={x|m-1≤x≤2m}
(Ⅰ)求A∩B,(∁RA)∪B;    
(Ⅱ)若B∩C=C,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三角形ABC中,(a+b+c)(b+c-a)=
6
bc,求cosA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖四邊形ABCD是矩形,PA⊥平面ABCD,PA=AD,M、N分別是PC、AB的中點.
?①求證MN∥平面PAD;
?②求證MN⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的流程圖,輸出的a的值為
 

查看答案和解析>>

同步練習冊答案