命題“?x∈(0,+∞),x3-x2+1≥0,”的否定是( 。
A、?x∈(0,+∞),x3-x2+1≤0
B、?x∈(0,+∞),x3-x2+1≤0
C、?x∈(0,+∞),x3-x2+1<0
D、?x∈(0,-∞),x3-x2+1<0
考點:命題的否定
專題:簡易邏輯
分析:全稱命題的否定是特稱命題,寫出結果即可.
解答: 解:全稱命題的否定是特稱命題,
命題“?x∈(0,+∞),x3-x2+1≥0,”的否定是?x∈(0,+∞),x3-x2+1<0.
故選:C.
點評:本題考查命題的否定,注意全稱命題與特稱命題的否定關系.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列命題正確的個數(shù)為(  )
①經(jīng)過三點確定一個平面;
②梯形可以確定一個平面;
③兩兩相交的三條直線最多可以確定三個平面;
④如果兩個平面有三個公共點,則這兩個平面重合.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個正方體內(nèi)接于一個球,過球心作一個截面,則截面不可能的圖形為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我們知道十進制數(shù)有10個數(shù)碼即0~9,進位規(guī)則是“逢十進一”,如47+56=103;由此可知八進制數(shù)有8個數(shù)碼即0~7,進位規(guī)則是“逢八進一”,則在八進制下做如下運算47+56=(  )
A、85B、103
C、125D、185

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的莖葉圖中,甲、乙兩組數(shù)據(jù)的中位數(shù)分別是(  )
A、42   42
B、45  46
C、45  42
D、47  48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知矩陣A=
1
-1
 
2
4

(Ⅰ)求A的逆矩陣A-1;
(Ⅱ)求矩陣A的特征值λ1、λ2和對應的特征向量
α1
、
α2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)字0、1、3、4、5、8組成沒有重復數(shù)字的四位數(shù).
(Ⅰ)可以組成多少個不同的四位偶數(shù)?
(Ⅱ)可以組成多少個不同的能被5整除的四位數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知f(x)=
a•2x+a-2
2x
是奇函數(shù),
(1)求a的值;
(2)判斷f(x)的單調性,x∈R;
(3)若方程f(x)=m(m>0)在(-∞,0)上有解,求證:-
1
3
<f(m)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一工廠生產(chǎn)A,B,C三種商品,每種商品都分為一級和二級兩種標準,某月工廠產(chǎn)量如下表(單位:件):
A B C
一級 100 150 400
二級 300 450 600
(Ⅰ)用分層抽樣的方法在C種商品中抽取一個容量為5的樣本.將該樣本看成一個總體,從中任取2件商品,求至少有1件一級品的概率;
(Ⅱ)用隨機抽樣的方法從B類商品中抽取8件,經(jīng)檢測它們的得分如下:9.4、8.6、9.2、9.6、8.7、9.3、9.0、8.2.把這8件商品的得分看成一個總體,從中任取一個數(shù),求該數(shù)與這8個數(shù)的平均數(shù)之差的絕對值不超過0.5的概率.

查看答案和解析>>

同步練習冊答案