20.已知點F為拋物線y2=2px(p>0)的焦點,點M(2,m)在拋物線E上,且|MF|=3.
(1)求拋物線E的方程;
(2)過x軸正半軸上一點N(a,0)的直線與拋物線E交于A,B兩點,若OA⊥OB,求a的值.

分析 (1)利用拋物線的定義,求出p,即可求拋物線E的方程;
(2)設(shè)直線AB的方程為x=ty+a,與拋物線方程聯(lián)立,利用x1x2+y1y2=0求解即可.

解答 解:(1)由題意,2+$\frac{p}{2}$=3,∴p=2,
∴拋物線E的方程為y2=4x;
(2)設(shè)直線AB的方程為x=ty+a.A(x1,y1)、B(x2,y2),
聯(lián)立拋物線方程得y2-4ty-4a=0,y1+y2=4t,y1•y2=-4a
∵OA⊥OB,
∴x1x2+y1y2=0,
∴a2-4a=0
∵a>0,∴a=4.

點評 本題考查拋物線的標(biāo)準(zhǔn)方程,考查向量知識的運用,考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理的運用,正確設(shè)出直線方程是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)α∈(0,$\frac{π}{3}$),滿足$\sqrt{3}$sinα+cosα=$\frac{\sqrt{6}}{2}$.
(1)求cos(α+$\frac{π}{6}$)的值;
(2)求cos(2α+$\frac{7}{12}$π)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知l為一條直線,α,β為兩個不同的平面,則下列說法正確的是(  )
A.若l∥α,α∥β,則l∥βB.若α⊥β,l⊥α,則l⊥βC.若l∥α,α⊥β,則l⊥βD.若l⊥α,α∥β,則l⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若集合A={x|x2-x-2<0},且A∪B=A,則集合B可能是(  )
A.{0,1}B.{x|x<2}C.{x|-2<x<1}D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知命題“若{an}是常數(shù)列,則{an}是等差數(shù)列”,在其逆命題、否命題和逆否命題中,假命題的個數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知曲線C的極坐標(biāo)方程是ρ-2sinθ=0,以極點為原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l過點M(1,0),傾斜角為$\frac{2π}{3}$.
(1)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(2)設(shè)直線l與曲線C交于A,B兩點,求|MA|+|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,角A,B,C所對的邊分別為a,b,c,且cos2A+cos2B+2sinAsinB=2coc2C.
(Ⅰ)求角C的值;
(Ⅱ)若△ABC為銳角三角形,且$c=\sqrt{3}$,求a-b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖1,等腰梯形BCDP中,BC∥PD,BA⊥PD于點A,PD=3BC,且AB=BC=1.沿AB把△PAB折起到△P'AB的位置(如圖2),使∠P'AD=90°.

(Ⅰ)求證:CD⊥平面P'AC;
(Ⅱ)求三棱錐A-P'BC的體積;
(Ⅲ)線段P'A上是否存在點M,使得BM∥平面P'CD.若存在,指出點M的位置并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知冪函數(shù)y=f(x)過點(2,8),則f(3)=( 。
A.27B.9C.8D.4

查看答案和解析>>

同步練習(xí)冊答案