A.1B.C.0D.-1
A
析:先求導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性研究出函數(shù)的極值點(diǎn),連續(xù)函數(shù)f(x)在區(qū)間(0,1)內(nèi)只有一個(gè)極值,那么極大值就是最大值,從而求出所求.
解答:解:f’(x)=3-12x2=3(1-2x)(1+2x)
令f’(x)=0,解得:x=或-(舍去)
當(dāng)x∈(0,)時(shí),f’(x)>0,當(dāng)x∈(,1)時(shí),f’(x)<0,
∴當(dāng)x=時(shí)f(x)(x∈[0,1])的最大值是f()=1
故選A.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,連續(xù)函數(shù)在區(qū)間(a,b)內(nèi)只有一個(gè)極值,那么極大值就是最大值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(10分)已知函數(shù) 
(1)判斷函數(shù)在區(qū)間
上的單調(diào)性;(2)若當(dāng)時(shí),恒成立,求正整數(shù)的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知:函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185434050204.gif" style="vertical-align:middle;" />; 如果命題“為真,
為假”,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分9分)
已知函數(shù)。
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)求的極大值;
(Ⅲ)求證:對(duì)于任意,函數(shù)上恒成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分13分)已知函數(shù)
(I)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;
(II)令,是否存在實(shí)數(shù),當(dāng)是自然常數(shù))時(shí),函數(shù)
的最小值是3若存在,求出的值;若不存在,說(shuō)明理由;
(改編)(Ⅲ)當(dāng)時(shí),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)的導(dǎo)數(shù)是     
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線以點(diǎn)(1,-)為切點(diǎn)的切線的傾斜角為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(理科)已知函數(shù)處有極值
(Ⅰ)求實(shí)數(shù)值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間
(Ⅲ)令,若曲線處的切線與兩坐標(biāo)軸分別交于兩點(diǎn)( 為坐標(biāo)原點(diǎn)),求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)

查看答案和解析>>

同步練習(xí)冊(cè)答案