(10分)已知函數(shù) 
(1)判斷函數(shù)在區(qū)間
上的單調(diào)性;(2)若當(dāng)時(shí),恒成立,求正整數(shù)的最大值。
(1),

上是減函數(shù);
(2)當(dāng)時(shí),恒成立,即對(duì) 恒成立,即的最小值大于;
    記
上單調(diào)增,又
,存在唯一實(shí)數(shù)根,且滿足

時(shí),時(shí)的最小值是正整數(shù)的最大值是3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
函數(shù),其中為常數(shù).
(1)證明:對(duì)任意,的圖象恒過(guò)定點(diǎn);
(2)當(dāng)時(shí),判斷函數(shù)是否存在極值?若存在,求出極值;若不存在,說(shuō)明理由;
(3)若對(duì)任意時(shí),恒為定義域上的增函數(shù),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若函數(shù)f(x)在定義域R內(nèi)可導(dǎo),f(2+x)=f(2-x),且當(dāng)x∈(-∞,2)時(shí),(x-2)>0.設(shè)a=f(1),,c=f(4),則a,b,c的大小為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


(本小題滿分14分)
已知是定義在上的函數(shù), 其三點(diǎn), 若點(diǎn)的坐標(biāo)為,且 上有相同的單調(diào)性, 在上有相反的單調(diào)性.
(1)求 的取值范圍;
(2)在函數(shù)的圖象上是否存在一點(diǎn), 使得 在點(diǎn)的切線斜率為?求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由;
(3)求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)設(shè)x=1和x=2是函數(shù)f(x)=alnx+bx2+x的兩個(gè)極值點(diǎn)
(1)求a,b的值
(2)求f(x)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

 
A.1B.C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分) 
已知函數(shù)有且只有兩個(gè)相異實(shí)根0,2,且
   
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)已知各項(xiàng)均不為1的數(shù)列滿足,求通,
(Ⅲ)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),其中實(shí)數(shù)
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若處取得極值,試討論的單調(diào)性。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140823/20140823185506482308.gif" style="vertical-align:middle;" />,且的圖像如右圖所示,記的導(dǎo)函數(shù)為,則不等式
的解集是   ▲   .

查看答案和解析>>

同步練習(xí)冊(cè)答案