數(shù)列{an}中,a1=a2=1,an+2=an+1+an對所有正整數(shù)n都成立,則a10等于( 。
A、34B、55C、89D、100
考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件利用遞推思想求解.
解答: 解:∵數(shù)列{an}中,a1=a2=1,
an+2=an+1+an對所有正整數(shù)n都成立,
∴a3=1+1=2,
a4=2+1=3,
a5=3+2=5,
a6=5+3=8,
a7=8+5=13,
a8=13+8=21,
a9=21+13=34,
a10=34+21=55.
故選:B.
點(diǎn)評:本題考查數(shù)列的第10項的求法,解題時要認(rèn)真審題,注意遞推公式的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,某幾何體的三視圖在網(wǎng)格紙上,且網(wǎng)格紙上小正方形的邊長為1,則該幾何體的體積為(  )
A、6π+4
B、12π+4
C、6π+12
D、12π+12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項和為Sn對任意正整數(shù)n都有Sn=2an-1,則S6=(  )
A、32B、31C、64D、63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b為正實(shí)數(shù),直線y=x-a與曲線y=ln(x+b)相切,則
a2
2+b
的取值范圍是( 。
A、(0,
1
2
B、(0,1)
C、(0,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2-2x=0上的點(diǎn)到直線L:y=kx-2的最近距離為1,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,AB=AC,D,E分別為BC,BB1的中點(diǎn),四邊形B1BCC1是正方形.
(1)求證:A1B∥平面AC1D;
(2)求證:CE⊥平面AC1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

抽氣機(jī)每次抽出容器內(nèi)空氣的60%,要使容器內(nèi)的空氣少于原來的0.1%,則至少要抽
 
次(lg2≈0.3010)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念.記交通指數(shù)為T,其范圍為[0,10],分別有5個級別:T∈[0,2)暢通;T∈[2,4)基本暢通;T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶拢绺叻鍟r段(T≥3),從貴陽市交通指揮中心隨機(jī)選取了二環(huán)以內(nèi)50個交通路段,依據(jù)交通指數(shù)數(shù)據(jù)繪制的直方圖如圖所示:
(1)據(jù)此直方圖估算交通指數(shù)T∈[4,8)時的中位數(shù)和平均數(shù)
(2)據(jù)此直方圖求出早高峰二環(huán)以內(nèi)的3個路段至少有兩個嚴(yán)重?fù)矶碌母怕适嵌嗌伲?br />(3)某人上班路上所用時間若暢通時為20分鐘,基本暢通為30分鐘,輕度擁堵為35分鐘;中度擁堵為45分鐘;嚴(yán)重?fù)矶聻?0分鐘,求此人所用時間的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2sin(πx),若存在x0∈R,使得對任意的x∈R,都有f(x)≤f(x0)成立.則關(guān)于m的不等式m2+m-f(x0)>0的解為
 

查看答案和解析>>

同步練習(xí)冊答案