【題目】在平面直角坐標(biāo)系中有如下正確結(jié)論:為曲線(、為非零實(shí)數(shù),且不同時(shí)為負(fù))上一點(diǎn),則過點(diǎn)的切線方程為.
(1)已知為橢圓上一點(diǎn),為過點(diǎn)的橢圓的切線,若直線與直線的斜率分別為與,求證:為定值;
(2)過橢圓上一點(diǎn)引橢圓的切線,與軸交于點(diǎn).若為正三角形,求橢圓的方程;
(3)求與圓及(2)中的橢圓均相切的直線與坐標(biāo)軸圍成的三角形的面積的取值范圍.
【答案】(1)證明見解析;(2);(3)
【解析】
(1)根據(jù)已知題目中所給的結(jié)論結(jié)合斜率公式可以證明出為定值;
(2) 由題目中的結(jié)論求出橢圓切線方程,求出點(diǎn)的坐標(biāo),根據(jù)等邊三角形三邊相等列出方程組,即可求出的值;
(3)設(shè)出直線的方程,根據(jù)與圓相切和(2)中橢圓相切,得到兩個(gè)等式,求出三角形的面積表達(dá)式,最后利用基本不等式可以求出三角形的面積的取值范圍.
(1) 為橢圓上一點(diǎn),為過點(diǎn)的橢圓的切線,所以的方程為:,由題意可知:,所以
為定值;
(2)設(shè)點(diǎn)的坐標(biāo)為:,由已知所給的結(jié)論可知:過橢圓上一點(diǎn)引橢圓的切線的方程為:,與題意可知:點(diǎn)的坐標(biāo)為:.
.
因?yàn)?/span>為正三角形,所以三邊相等,因此有方程組:
,因?yàn)辄c(diǎn)在橢圓上,所以
橢圓的方程為;
(3)設(shè)直線的方程為:,由題意可知:.與兩個(gè)坐標(biāo)軸的交點(diǎn)坐標(biāo)分別為:,所以直線與坐標(biāo)軸圍成的三角形的面積為:.
因?yàn)橹本與相切,所以方程組:有唯一解,
即方程有唯一實(shí)根,故,
即.
因?yàn)橹本與相切,所以方程組:有唯一解,
即方程有唯一實(shí)根,故,
即,而,所以
因?yàn)?/span>,所以,因?yàn)?/span>,所以這個(gè)不等式恒成立.
(當(dāng)且僅當(dāng)時(shí)取等號,即
取等號),所以直線與坐標(biāo)軸圍成的三角形的面積的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動點(diǎn)與點(diǎn)的距離和它到直線的距離相等,記點(diǎn)的軌跡為曲線
(1)求曲線的方程
(2)設(shè)點(diǎn),動點(diǎn)在曲線上運(yùn)動時(shí),的最短距離為,求的值以及取到最小值時(shí)點(diǎn)的坐標(biāo)
(3)設(shè)為曲線的任意兩點(diǎn),滿足(為原點(diǎn)),試問直線是否恒過一個(gè)定點(diǎn)?如果是,求出定點(diǎn)坐標(biāo);如果不是,說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足: , , .
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,且滿足,試確定的值,使得數(shù)列為等差數(shù)列;
(3)將數(shù)列中的部分項(xiàng)按原來順序構(gòu)成新數(shù)列,且,求證:存在無數(shù)個(gè)滿足條件的無窮等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為保護(hù)農(nóng)民種糧收益,促進(jìn)糧食生產(chǎn),確保國家糧食安全,調(diào)動廣大農(nóng)民糧食生產(chǎn)的積極性,從2004年開始,國家實(shí)施了對種糧農(nóng)民直接補(bǔ)貼.通過對2014~2018年的數(shù)據(jù)進(jìn)行調(diào)查,發(fā)現(xiàn)某地區(qū)發(fā)放糧食補(bǔ)貼額(億元)與該地區(qū)糧食產(chǎn)量(萬億噸)之間存在著線性相關(guān)關(guān)系.統(tǒng)計(jì)數(shù)據(jù)如下表:
年份 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
補(bǔ)貼額億元 | 9 | 10 | 12 | 11 | 8 |
糧食產(chǎn)量萬億噸 | 23 | 25 | 30 | 26 | 21 |
(1)請根據(jù)如表所給的數(shù)據(jù),求出關(guān)于的線性回歸直線方程;
(2)通過對該地區(qū)糧食產(chǎn)量的分析研究,計(jì)劃2019年在該地區(qū)發(fā)放糧食補(bǔ)貼額7億元,請根據(jù)(1)中所得的線性回歸直線方程,預(yù)測2019年該地區(qū)的糧食產(chǎn)量.
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于曲線C所在平面上的定點(diǎn),若存在以點(diǎn)為頂點(diǎn)的角,使得對于曲線C上的任意兩個(gè)不同的點(diǎn)A,B恒成立,則稱角為曲線C相對于點(diǎn)的“界角”,并稱其中最小的“界角”為曲線C相對于點(diǎn)的“確界角”.曲線相對于坐標(biāo)原點(diǎn)的“確界角”的大小是 _________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高科技企業(yè)研制出一種型號為A的精密數(shù)控車床,A型車床為企業(yè)創(chuàng)造的價(jià)值逐年減少(以投產(chǎn)一年的年初到下一年的年初為A型車床所創(chuàng)造價(jià)值的第一年).若第 1 年A型車床創(chuàng)造的價(jià)值是250萬元,且第1年至第6年,每年A型車床創(chuàng)造的價(jià)值減少30萬元;從第7年開始,每年A型車床創(chuàng)造的價(jià)值是上一年價(jià)值的 50%.現(xiàn)用()表示A型車床在第n年創(chuàng)造的價(jià)值.
(1)求數(shù)列的通項(xiàng)公式;
(2)記為數(shù)列的前n項(xiàng)的和,企業(yè)經(jīng)過成本核算,若 萬元,則繼續(xù)使用A型車床,否則更換A型車床,試問該企業(yè)須在第幾年年初更換A型車床?(已知:若正數(shù)數(shù)列是單調(diào)遞減數(shù)列,則數(shù)列也是單調(diào)遞減數(shù)列).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),,是橢圓上關(guān)于軸對稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓于另一點(diǎn),證明直線與軸相交于定點(diǎn);
(Ⅲ)在(Ⅱ)的條件下,過點(diǎn)的直線與橢圓交于,兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.
(1) 經(jīng)計(jì)算估計(jì)這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取個(gè),再從這個(gè)中隨機(jī)抽取個(gè),求這個(gè)芒果中恰有個(gè)在內(nèi)的概率.
(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有個(gè),經(jīng)銷商提出如下兩種收購方案:
A:所以芒果以元/千克收購;
B:對質(zhì)量低于克的芒果以元/個(gè)收購,高于或等于克的以元/個(gè)收購.
通過計(jì)算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上海市普通高中學(xué)業(yè)水平等級考成績共分為五等十一級,各等級換算成分?jǐn)?shù)如表所示:
等級 | A | B | C | D | E | ||||||
分?jǐn)?shù) | 70 | 67 | 64 | 61 | 58 | 55 | 52 | 49 | 46 | 43 | 40 |
上海某高中2018屆高三班選考物理學(xué)業(yè)水平等級考的學(xué)生中,有5人取得成績,其他人的成績至少是B級及以上,平均分是64分,這個(gè)班級選考物理學(xué)業(yè)水平等級考的人數(shù)至少為______人
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com