【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設,,是橢圓上關于軸對稱的任意兩個不同的點,連結交橢圓于另一點,證明直線與軸相交于定點;
(Ⅲ)在(Ⅱ)的條件下,過點的直線與橢圓交于,兩點,求的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(kx+)ex﹣2x,若f(x)<0的解集中有且只有一個正整數(shù),則實數(shù)k的取值范圍為 ( 。
A. [ ,)B. (,]
C. [)D. [)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為半橢圓的左、右兩個頂點,為上焦點,將半橢圓和線段合在一起稱為曲線
(1)求的外接圓圓心的坐標
(2)過焦點的直線與曲線交于兩點,若,求所有滿足條件的直線的方程
(3)對于一般的封閉曲線,曲線上任意兩點距離的最大值稱為該曲線的“直徑”,如圓的“直徑”就是通常的直徑,橢圓的“直徑”就是長軸的長,求該曲線的“直徑”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中有如下正確結論:為曲線(、為非零實數(shù),且不同時為負)上一點,則過點的切線方程為.
(1)已知為橢圓上一點,為過點的橢圓的切線,若直線與直線的斜率分別為與,求證:為定值;
(2)過橢圓上一點引橢圓的切線,與軸交于點.若為正三角形,求橢圓的方程;
(3)求與圓及(2)中的橢圓均相切的直線與坐標軸圍成的三角形的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線-=1(a>0,b>0)的離心率為2,焦點到漸近線的距離等于,過右焦點F2的直線l交雙曲線于A,B兩點,F1為左焦點.
(1)求雙曲線的方程;
(2)若△F1AB的面積等于6,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的單調區(qū)間;
(Ⅱ)若對于任意的(為自然對數(shù)的底數(shù)),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關于x,y的方程x2+y2﹣4x+4y+m=0表示一個圓.
(1)求實數(shù)m的取值范圍;
(2)若m=4,過點P(0,2)的直線l與圓相切,求出直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐S-ABCD的底面是邊長為1的正方形,則棱SB垂直于底面.
(1)求證:平面SBD⊥平面SAC;
(2)若SA與平面SCD所成角的正弦值為,求SB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com