如圖,正四棱柱ABCD-A1B1C1D1中,AA1=2AB,則異面直線A1B與AD1所成角的余弦值為______.
解.如圖,連接BC1,A1C1,
∠A1BC1是異面直線A1B與AD1所成的角,
設(shè)AB=a,AA1=2a,∴A1B=C1B=
5
a,A1C1=
2
a,
根據(jù)余弦定理可知∠A1BC1的余弦值為
4
5

故答案為:
4
5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知二面角的大小為,為異面直線,且,則所成的角為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線m與平面α所成角為
π
3
,直線n?α,則直線m,n所成角的取值范圍是( 。
A.(0,
π
2
)
B.[
π
6
,
π
2
]
C.[
π
3
,
π
2
]
D.[
π
6
π
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方體ABCD-A′B′C′D′中,直線D′A與DB所成的角可以表示為( 。
A.∠D′DBB.∠AD′C′C.∠ADBD.∠DBC′

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知四棱錐P-ABCD的底面是邊長為2的菱形,且∠ABC=60°,PA=PC=2,PB=PD.
(Ⅰ)若O是AC與BD的交點,求證:PO⊥平面ABCD;
(Ⅱ)若點M是PD的中點,求異面直線AD與CM所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在空間四邊形ABCD中,E,F(xiàn)分別是AB,CD的中點.
(1)若AB=BC=CD=AD=AC=BD=2a,求EF的長;
(2)若AD=BC=2a,EF=
3
a
,求異面直線AD與BC所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,平面AC⊥平面AE,且四邊形ABCD與四邊形ABEF都是正方形,則異面直線AC與BF所成角的大小是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知a、b為異面直線,點A、B在直線a上,點C、D在直線b上,且AC=AD,BC=BD,則直線a、b所成的角為( 。
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)OA是球O的半徑,M是OA的中點,過M且與OA成450角的平面截球O的表面得到圓C,若圓C的面積等于
8
,則球O的半徑等于______.

查看答案和解析>>

同步練習(xí)冊答案