【題目】已知數(shù)列, 滿足, ,且, .
(1)求及;
(2)猜想, 的通項公式,并證明你的結(jié)論;
(3)證明:對所有的, .
【答案】(1), , , , , ;(2)見解析;(3)見解析.
【解析】試題分析:(1)依次把n=1,2,3代入遞推式即可求出{an},{bn}的前4項;
(2)利用數(shù)學(xué)歸納法證明猜想;
(3)利用放縮法證明不等式左邊,利用函數(shù)單調(diào)性證明不等式右邊.
試題解析:
(1)因為, ,且,
令,得到解得, ;同理令分別解得由此可得, ,
, ;
(2)證明:猜測, ,
用數(shù)學(xué)歸納法證明:①當時,由上可得結(jié)論成立.
②假設(shè)當時,結(jié)論成立,即, ,
那么當時, ,
,所以當時,結(jié)論也成立.
由①②,可知, 對一切正整數(shù)都成立.
(3)由(2)知, ,
于是所證明的不等式即為
(。┫茸C明:
因為,所以,從而,
即,所以
(ⅱ)再證明
設(shè)函數(shù), ,則, .
因為在區(qū)間上為增函數(shù),
所以當時, ,
從而在區(qū)間上為單調(diào)遞減函數(shù),
因此對于一切都成立,因為當時, ,
所以
綜上所述,對所有的,均有成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知圓的參數(shù)方程為(為參數(shù)),若是圓與軸正半軸的交點,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,設(shè)過點的圓的切線為.
(1)求直線的極坐標方程;
(2)求圓上到直線的距離最大的點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計劃在某水庫建一座至多安裝臺發(fā)電機的水電站,過去年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上,不足的年份有年,不低于且不超過的年份有年,超過的年份有年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨立.
(1)求未來年中,設(shè)表示流量超過的年數(shù),求的分布列及期望;
(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關(guān)系:
年入流量 | |||
發(fā)電機最多可運行臺數(shù) |
若某臺發(fā)電機運行,則該臺年利潤為萬元,若某臺發(fā)電機未運行,則該臺年虧損萬元,欲使水電站年總利潤的均值達到最大,應(yīng)安裝發(fā)電機多少臺?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一個圓.
(1)求實數(shù)m的取值范圍;
(2)求該圓的半徑r的取值范圍;
(3)求圓心C的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面幾種推理過程是演繹推理的是 ( )
A. 某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人數(shù)超過50人
B. 兩條直線平行,同旁內(nèi)角互補,如果∠A與∠B是兩條平行直線的同旁內(nèi)角,則∠A+∠B=180°
C. 由平面三角形的性質(zhì),推測空間四邊形的性質(zhì)
D. 在數(shù)列{an}中,a1=1,an= (an-1+)(n≥2),由此歸納出{an}的通項公
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= 的定義域為R,則實數(shù)a的取值范圍為( )
A.(0,1)
B.[0,1]
C.(0,1]
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=log2 log4 + (2≤x≤2m , m>1,m∈R)
(1)求x=4 時對應(yīng)的y值;
(2)求該函數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com