執(zhí)行如圖所示的流程圖,則輸出S的值為
 

考點:程序框圖
專題:算法和程序框圖
分析:根據(jù)程序框圖判斷:程序運行的功能是求S=2+4+6+…+2k,再根據(jù)不滿足k≤20最小的k=21,計算程序運行終止時的S值.
解答: 解:由程序框圖知:程序運行的功能是求S=2+4+6+…+2k,
當(dāng)k=21時,不滿足條件k≤20,程序運行終止,此時S=2+4+6+…+40=
20(2+40)
2
=420.
故答案為:420.
點評:本題考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程判斷程序運行的功能是解答此類問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(0,4),離心率為
3
5

(1)求C的方程;
(2)求過點(3,0)且斜率為
4
5
的直線被C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,4Sn=an2+2an-3,且a1,a2,a3,a4,…,a11成等比數(shù)列,當(dāng)n≥11時,an>0.
(Ⅰ)求證:當(dāng)n≥11時,{an}成等差數(shù)列;
(Ⅱ)求{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線(1+4k)x-(2-3k)y-(3+12k)=0(k∈R)所經(jīng)過的定點F恰好是中心在原點的橢圓C的一個焦點,且橢圓C上的點到點F的最大距離為8.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)點A的坐標(biāo)為(-2,1),M為橢圓C上任意一點,求|MF|+|MA|的最大值;
(Ⅲ)已知圓O:x2+y2=1,直線l:mx+ny=1.試證明當(dāng)點P(m,n)在橢圓C上運動時,直線l與圓O恒相交,并求直線l被圓O所截得的弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,滿足a3+a5=26,S9=153,遞增的等比數(shù)列{bn}中,滿足b2•b5=128.
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)設(shè)?x∈N*,試比較Sn,bn的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P(x,y)為不等式組
x2+y2≤1
x-y-1≤0
x+y+1≥0
表示的平面區(qū)域上一點,則x+2y取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,直線ρ(sinθ-cosθ)=a與曲線ρ=2cosθ-4sinθ相交于A,B兩點,若|AB|=2
3
,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖展示了一個由區(qū)間(0,1)到實數(shù)集R的映射過程:區(qū)間(0,1)中的實數(shù)m對應(yīng)數(shù)軸上的點M,如圖①;將線段AB圍成一個圓,使兩端點A、B恰好重合,如圖②;再將這個圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點A的坐標(biāo)為(0,1),在圖形變化過程中,圖①中線段AM的長度對應(yīng)于圖③中的弧ADM的長度,如圖③.圖③中直線AM與x軸交于點N(n,0),則m的象就是n,記作f(m)=n.
給出下列命題:
①f(
1
4
)=1;
②f(x)在定義域(0,1)上單調(diào)遞增;
③f(x)為偶函數(shù); ④f(x)=-f(1-x);
⑤關(guān)于m的不等式|f(m)|≤1的解集為[
1
4
,1]

則所有正確的命題序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)x、y滿足
x-2y+3≥0
3x+2y-7≤0
x+2y-1≥0
,則z=(
1
2
x•4-y的最小值為( 。
A、
1
32
B、
1
16
C、
1
4
D、
1
2

查看答案和解析>>

同步練習(xí)冊答案