設(shè)r>0,那么直線xcosθ+ysinθ=r(θ是常數(shù))與圓
x=rcosφ
y=rsinφ
(φ是參數(shù))的位置關(guān)系是(  )
A、相交B、相切
C、相離D、視r的大小而定
考點:參數(shù)方程化成普通方程,直線與圓的位置關(guān)系
專題:坐標(biāo)系和參數(shù)方程
分析:利用參數(shù)方程化為直角坐標(biāo)方程,通過圓心與直線的距離與半徑的關(guān)系,判斷選項即可.
解答: 解:圓
x=rcosφ
y=rsinφ
的圓心為坐標(biāo)原點,半徑為r.
圓心到直線的距離為
r
sin2θ+cos2θ
=r
,
所以直線與圓相切.
故選:B.
點評:本題考查點到直線的距離,直線與圓位置關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從分別寫有1,2,3,4,5的五張卡片中任取兩張,假設(shè)每張卡片被取到的概率相等,且每張卡片上只有一個數(shù)字,則收到的兩張卡片上的數(shù)字之和為偶數(shù)的概率為( 。
A、
4
5
B、
16
25
C、
13
25
D、
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
mx2+lnx-2x在定義域內(nèi)是增函數(shù),則實數(shù)m的取值范圍為( 。
A、[0,+∞)
B、(0,+∞)
C、[-3,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(4)=f(-2)=1,且y=f′(x)的圖象如圖所示,則不等式f(x)<1的解集是( 。
A、(-2,0)
B、(0,4)
C、(-2,4)
D、(-∞,-2)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的定義域和值域都是[-1,1](其圖象如圖所示),函數(shù)g(x)=sinx,x∈[-π,π].定義:當(dāng)f(x1)=0(x1∈[-1,1])且g(x2)=x1(x2∈[-π,π])時,稱x2是方程f(g(x))=0的一個實數(shù)根.則方程f(g(x))=0的所有不同實數(shù)根的個數(shù)是( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的導(dǎo)函數(shù)圖象如圖所示,若△ABC是以角C為鈍角的鈍角三角形,則一定成立的是( 。
A、f(sinA)>f(cosB)
B、f(sinA)<f(cosB)
C、f(sinA)>f(sinB)
D、f(cosA)<f(cosB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐P-ABCD的底面ABCD是平行四邊形,M、N分別是AB、PC的中點.
(Ⅰ)證明:MN∥平面PAD.
(Ⅱ)若CM=PM,MN⊥AB,證明:平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班50名學(xué)生在一次百米測試中,成績(單位:秒)全部介于13與18秒之間,將測試結(jié)果按如下方式分成五組:第一組[13,14),第二組[14,15),…,第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.若從第一、第五組中隨機(jī)取出兩個成績,求這兩個成績一個在第一組,一個在第五組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的面積為S,且|
BC
|2=
CA
CB
+2S.
(1)求B的大小;
(2)若S=
1
2
,且|
BC
-
BA
|=1,試求△ABC最長邊的長度.

查看答案和解析>>

同步練習(xí)冊答案