已知函數(shù)f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.718 28…為自然對數(shù)的底數(shù).
(1)設(shè)g(x)是函數(shù)f(x)的導(dǎo)函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn),證明:e-2<a<1.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,函數(shù)零點(diǎn)的判定定理,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)先求出函數(shù)f(x)的導(dǎo)數(shù),通過討論a的范圍得出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最值;
(2)設(shè)x0為f(x)在區(qū)間(0,1)內(nèi)的一個零點(diǎn),通過討論a的范圍,得出a的取值.
解答: 解:(1)由f(x)=ex-ax2-bx-1,得g(x)=f′(x)=ex-2ax-b,所以g′(x)=ex-2a.
當(dāng)x∈[0,1]時,g′(x)∈[1-2a,e-2a].
當(dāng)a≤
1
2
時,g′(x)≥0,所以g(x)在[0,1]上單調(diào)遞增,
因此g(x)在[0,1]上的最小值是g(0)=1-b;
當(dāng)a≥
e
2
時,g′(x)≤0,所以g(x)在[0,1]上單調(diào)遞減,
因此g(x)在[0,1]上的最小值是g(1)=e-2a-b;
當(dāng)
1
2
<a<
e
2
時,令g′(x)=0,得x=ln(2a)∈(0,1),
所以函數(shù)g(x)在區(qū)間[0,ln(2a)]上單調(diào)遞減,在區(qū)間(ln(2a),1]上單調(diào)遞增,
于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b.
綜上所述,當(dāng)a≤
1
2
時,g(x)在[0,1]上的最小值是g(0)=1-b;
當(dāng)
1
2
<a<
e
2
時,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b;
當(dāng)a≥
e
2
時,g(x)在[0,1]上的最小值是g(1)=e-2a-b.…(5分)
(2)證明:設(shè)x0為f(x)在區(qū)間(0,1)內(nèi)的一個零點(diǎn),則由f(0)=f(x0)=0可知,
f(x)在區(qū)間(0,x0)上不可能單調(diào)遞增,也不可能單調(diào)遞減.
則g(x)不可能恒為正,也不可能恒為負(fù).
故g(x)在區(qū)間(0,x0)內(nèi)存在零點(diǎn)x1
同理g(x)在區(qū)間(x0,1)內(nèi)存在零點(diǎn)x2.故g(x)在區(qū)間(0,1)內(nèi)至少有兩個零點(diǎn),
由(1)知,當(dāng)a≤
1
2
時,g(x)在[0,1]遞增,故g(x)在(0,1)內(nèi)至多有1個零點(diǎn),
當(dāng)a≥
e
2
時,g(x)在[0,1]遞減,故g(x)在(0,1)內(nèi)至多有1個零點(diǎn),都不合題意,
所以
1
2
<a<
e
2

此時,g(x)在區(qū)間[0,ln(2a)]遞減,在區(qū)間(ln(2a),1)遞增,
因此x1∈(0,ln(2a)),x2∈(ln(2a),1),必有:g(0)=1-b>0,g(1)=e-2a-b>0,
由f(1)=0,得a+b=e-1<2,有g(shù)(0)=a-e+2>0,g(1)=1-a>0,解得:e-2<a<1,
所以函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn)時,e-2<a<1.
點(diǎn)評:本題考查了函數(shù)的單調(diào)性,函數(shù)的最值問題,考查導(dǎo)數(shù)的應(yīng)用,考查分類討論思想,是一道綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(lnx-ax)有兩個極值點(diǎn)x1、x2,(x1<x2
(Ⅰ)求實(shí)數(shù)a的取值范圍;
(Ⅱ)求證:f(x1)<0,f(x2)>-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+
a
x
,常數(shù)a∈R.
(1)討論函數(shù)f(x)的奇偶性,并說明理由;
(2)若函數(shù)f(x)在x∈[2,+∞)上為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,-2),
b
=(-2,1-m),若
a
b
,則實(shí)數(shù)m的值為( 。
A、3B、-3C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|sin(2x+
π
3
)|,則下列關(guān)于函數(shù)f(x)的說法中正確的是( 。
A、f(x)是偶函數(shù)
B、f(x)的最小正周期為π
C、f(x)在區(qū)間[
π
3
,
12
]
上是增函數(shù)
D、f(x)的圖象關(guān)于點(diǎn)(-
π
6
,0)
對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)B(-b,0),E(
m+b
2
n
2
),求BE的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=Z,集合M={0,2,4},N={-1,0,3},則圖中陰影部分表示的集合是( 。
A、{-1,3}B、{1,5}
C、{2,4}D、{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x-
1-x
的值域?yàn)椋ā 。?/div>
A、(-∞,1)
B、(-∞,1]
C、(0,1]
D、[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(-3,-1)和(4,-6)在直線3x-2y-a=0的兩側(cè),則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案