已知圓,直線,
(1)求證:直線與圓恒相交;
(2)當(dāng)時(shí),過(guò)圓上點(diǎn)作圓的切線交直線于點(diǎn),為圓上的動(dòng)點(diǎn),求的取值范圍;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓關(guān)于直線對(duì)稱(chēng),圓心在第二象限,半徑為.
(1)求圓的方程;
(2)是否存在直線與圓相切,且在軸、軸上的截距相等?若存在,求直線的方程;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,圓O1與圓O2的半徑都是1,,過(guò)動(dòng)點(diǎn)P分別作圓O1.圓O2的切線PM、PN(M.N分別為切點(diǎn)),使得試建立適當(dāng)?shù)淖鴺?biāo)系,并求動(dòng)點(diǎn)P的軌跡方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)
已知圓M過(guò)兩點(diǎn)C(1,-1)、D(-1,1)且圓心M在直線x+y-2=0上。
(1)、求圓M的方程
(2)、設(shè)P是直線3x+4y+8=0上的動(dòng)點(diǎn),PA、PB是圓M的兩條切線,A、B為切點(diǎn),求四邊形PAMB的面積的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知⊙的圓心,被軸截得的弦長(zhǎng)為.
(Ⅰ)求圓的方程;
(Ⅱ)若圓與直線交于,兩點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
直線:,圓方程為
(1)求證:直線和圓相交
(2)當(dāng)圓截直線所得弦最長(zhǎng)時(shí),求的值
(3)直線將圓分成兩個(gè)弓形,當(dāng)弓形面積之差最大時(shí),求直線方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知以點(diǎn)為圓心的圓與直線相切.過(guò)點(diǎn)的動(dòng)直線與圓相交于兩點(diǎn),是的中點(diǎn).
(1)求圓的方程;
(2)當(dāng)時(shí),求直線的方程.(用一般式表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)圓經(jīng)過(guò)點(diǎn)和.
(1)若圓的面積最小,求圓的方程;
(2)若圓心在直線上,求圓的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(13分) 已知圓,內(nèi)接于此圓,點(diǎn)的坐標(biāo),為坐標(biāo)原點(diǎn).
(Ⅰ)若的重心是,求直線的方程;
(Ⅱ)若直線與直線的傾斜角互補(bǔ),求證:直線的斜率為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com