15.若不等式${2^{2x-1}}+a>{log_{\frac{1}{2}}}x$在區(qū)間[1,2]上恒成立,則a的取值范圍是( 。
A.a<-2B.a>-2C.a<-9D.a>-9

分析 問題轉(zhuǎn)化為a>-log2x-22x-1在[1,2]恒成立,令f(x)=-log2x-22x-1,x∈[1,2],求出f(x)的最大值,求出a的范圍即可.

解答 解:若不等式${2^{2x-1}}+a>{log_{\frac{1}{2}}}x$在區(qū)間[1,2]上恒成立,
即a>-log2x-22x-1在[1,2]恒成立,
令f(x)=-log2x-22x-1,x∈[1,2],
顯然f(x)在[1,2]遞減,
故f(x)max=f(1)=-2,
故a>-2,
故選:B.

點評 本題考查了函數(shù)恒成立問題,考查對數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$(a+2)x2+(2a+1)x+1沒有極值,則整數(shù)a的個數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.函數(shù)f(x)=Asin(ωx+φ)$({A>0,ω>0,|φ|<\frac{π}{2}})$的部分圖象如圖所示.
(1)求f(x)的最小正周期及解析式;
(2)求函數(shù)f(x)在區(qū)間$x∈[{0,\frac{π}{2}}]$上的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.有一雙曲線方程為$\frac{x^2}{4}-\frac{y^2}{9}=1,{F_1},{F_2}$是其兩個焦點,點M在雙曲線上.
(1)若∠F1MF2=90°,求△F1MF2的面積;
(2)若∠F1MF2=60°時,△F1MF2的面積是多少?若∠F1MF2=120°時,△F1MF2的面積又是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.?dāng)?shù)列{an}滿足a1=$\sqrt{3}$與an+1=[an]+$\frac{1}{\{{a}_{n}\}}$([an]與{an}分別表示an的整數(shù)部分與分?jǐn)?shù)部分),則a2017=( 。
A.$3021+\sqrt{3}$B.$3024+\sqrt{3}$C.$3021+\frac{{\sqrt{3}-1}}{2}$D.$3024+\frac{{\sqrt{3}-1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.計算下列各式的值:
(1)${({2\frac{7}{9}})^{\frac{1}{2}}}+{({lg5})^0}+{({\frac{27}{64}})^{\frac{1}{3}}}$
(2)$\frac{lg8+lg125-lg2-lg5}{{lg\sqrt{10}•lg0.1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,$AC=\sqrt{6}$,BC=2,B=60°,則C=75°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)向量$\overrightarrow{a}$=(2,3m+2),$\overrightarrow$=(m,-1).若$\overrightarrow{a}$⊥$\overrightarrow$,則實數(shù)m等于( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在等腰直角三角形ABC中,AB=AC=4,點P是邊上異于A,B的一點.光線從點P出發(fā),經(jīng)BC,CA反射后又回到點P(如圖).若光線QR經(jīng)過△ABC的重心,則AP等于( 。
A.2B.1C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

同步練習(xí)冊答案