4.直線x-y+m=0與圓x2+y2-2x-1=0有兩個(gè)不同交點(diǎn)的一個(gè)必要不充分條件是( 。
A.0<m<1B.-4<m<0C.m<1D.-3<m<1

分析 求出圓的標(biāo)準(zhǔn)方程,利用直線和圓相交的條件求出m的取值范圍,結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:圓的標(biāo)準(zhǔn)方程為(x-1)2+y2=2,圓心為(1,0),半徑r=$\sqrt{2}$,
若直線與圓有兩個(gè)不同的交點(diǎn),
則圓心到直線的距離d=$\frac{|1+m|}{\sqrt{2}}$$<\sqrt{2}$,
即|1+m|<2,得-2<1+m<2,得-3<m<1,
則-3<m<1的一個(gè)必要不充分條件是m<1,
故選:C

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,利用直線和圓相交的等價(jià)條件求出m的取值范圍是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若曲線y=ax2在曲線y=$\frac{x}{2{x}^{2}-1}$(x>1)的上方,則a的取值范圍為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右頂點(diǎn)分別為A、B,上頂點(diǎn)為C,若△ABC是底角為30°的等腰三角形,則$\frac{c}{a}$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若角α的終邊經(jīng)過點(diǎn)P0(-3,-4),則tanα=( 。
A.$\frac{4}{3}$B.$\frac{3}{4}$C.-$\frac{4}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,角A、B、C的對(duì)邊為a,b,c滿足c=2acosBcosC+2bcosCcosA,且△ABC的面積為3$\sqrt{3}$,c=$\sqrt{13}$,則a+b=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=bx-b,g(x)=(bx-1)ex,b∈R
(Ⅰ)若b≥0,討論g(x)的單調(diào)性;
(Ⅱ)若不等式f(x)>g(x)有且僅有兩個(gè)整數(shù)解,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的最小正周期為π,將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位長度后所得的函數(shù)圖象過點(diǎn)P(0,1),則函數(shù)f(x)( 。
A.有一個(gè)對(duì)稱中心$({\frac{π}{12},0})$B.有一條對(duì)稱軸$x=\frac{π}{6}$
C.在區(qū)間$[{-\frac{π}{12},\frac{5π}{12}}]$上單調(diào)遞減D.在區(qū)間$[{-\frac{5π}{12},\frac{π}{12}}]$上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示,在△ABC中,AB的中點(diǎn)為O,且OA=1,點(diǎn)D在AB的延長線上,且$BD=\frac{1}{2}AB$.固定邊AB,在平面內(nèi)移動(dòng)頂點(diǎn)C,使得圓M與邊BC,邊AC的延長線相切,并始終與AB的延長線相切于點(diǎn)D,記頂點(diǎn)C的軌跡為曲線Γ.以AB所在直線為x軸,O為坐標(biāo)原點(diǎn)如圖所示建立平面直角坐標(biāo)系.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)設(shè)動(dòng)直線l交曲線Γ于E、F兩點(diǎn),且以EF為直徑的圓經(jīng)過點(diǎn)O,求△OEF面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,點(diǎn)P是平行四邊形ABCD所在平面外一點(diǎn),△PBC是等邊三角形,點(diǎn)A在平面PBC的正投影E恰好是PB中點(diǎn).
(Ⅰ)求證:PD∥平面ACE
(Ⅱ)若AB⊥PA,BC=2,求點(diǎn)P到平面ABCD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案