4.已知a=$\frac{1}{6}$ln8,b=$\frac{1}{2}$ln5,c=ln$\sqrt{6}$-ln$\sqrt{2}$,則( 。
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

分析 直接利用對(duì)數(shù)的性質(zhì)判斷大小即可.

解答 解:a=$\frac{1}{6}$ln8=$\frac{1}{2}ln2$,b=$\frac{1}{2}$ln5,c=ln$\sqrt{6}$-ln$\sqrt{2}$=$\frac{1}{2}ln3$,
∵ln2<ln3<ln5,
∴a<c<b.
故選:B.

點(diǎn)評(píng) 本題考查對(duì)數(shù)值大小的比較,考查函數(shù)的單調(diào)性的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.某中學(xué)高一(8)班共有學(xué)生56人,編號(hào)依次為1,2,3,…,56,現(xiàn)用系統(tǒng)抽樣的方法抽取一個(gè)容量為4的樣本,已知6,20,48號(hào)的同學(xué)已在樣本中,那么還有一個(gè)同學(xué)的編號(hào)是34.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.對(duì)于數(shù)列A:a1,a2,…,an,若滿(mǎn)足ai∈{0,1}(i=1,2,3,…,n),則稱(chēng)數(shù)列A為“0-1數(shù)列”.若存在一個(gè)正整數(shù)k(2≤k≤n-1),若數(shù)列{an}中存在連續(xù)的k項(xiàng)和該數(shù)列中另一個(gè)連續(xù)的k項(xiàng)恰好按次序?qū)?yīng)相等,則稱(chēng)數(shù)列{an}是“k階可重復(fù)數(shù)列”,例如數(shù)列A:0,1,1,0,1,1,0.因?yàn)閍1,a2,a3,a4與a4,a5,a6,a7按次序?qū)?yīng)相等,所以數(shù)列{an}是“4階可重復(fù)數(shù)列”.
(Ⅰ)分別判斷下列數(shù)列A:1,1,0,1,0,1,0,1,1,1.是否是“5階可重復(fù)數(shù)列”?如果是,請(qǐng)寫(xiě)出重復(fù)的這5項(xiàng);
(Ⅱ)若項(xiàng)數(shù)為m的數(shù)列A一定是“3階可重復(fù)數(shù)列”,則m的最小值是多少?說(shuō)明理由;
(III)假設(shè)數(shù)列A不是“5階可重復(fù)數(shù)列”,若在其最后一項(xiàng)am后再添加一項(xiàng)0或1,均可使新數(shù)列是“5階可重復(fù)數(shù)列”,且a4=1,求數(shù)列{an}的最后一項(xiàng)am的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知雙曲線(xiàn)兩個(gè)焦點(diǎn)坐標(biāo)分別是F1(-5,0),F(xiàn)2(5,0),雙曲線(xiàn)上一點(diǎn)到的距離之差的絕對(duì)值等于6,求雙曲線(xiàn)的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)y=log5x的定義域( 。
A.(-∞,0)B.(-∞,0]C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.交警隨機(jī)抽取了途經(jīng)某服務(wù)站的40輛小型轎車(chē)在經(jīng)過(guò)某區(qū)間路段的車(chē)速(單位:km/h),現(xiàn)將其分成六組為[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如圖所示的頻率分布直方圖.
(Ⅰ)某小型轎車(chē)途經(jīng)該路段,其速度在70km/h以上的概率是多少?
(Ⅱ)若對(duì)車(chē)速在[60,65),[65,70)兩組內(nèi)進(jìn)一步抽測(cè)兩輛小型轎車(chē),求至少有一輛小型轎車(chē)速度在[60,65)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.任取x,y∈[0,3],則x+y>4的概率為$\frac{2}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.“α=$\frac{π}{6}$”是$tan({π-a})=-\frac{{\sqrt{3}}}{3}$的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知關(guān)于x的方程x2+4x+p=0(p∈R)的兩個(gè)根是x1,x2
(1)若x1為虛數(shù)且|x1|=5,求實(shí)數(shù)p的值;
(2)若|x1-x2|=2,求實(shí)數(shù)p的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案