分析 由復數z1=a+2i(a∈R),z2=3-4i,則$\frac{{z}_{1}}{{z}_{2}}$=$\frac{a+2i}{3-4i}$,然后利用復數代數形式的乘除運算化簡,再根據已知條件列出方程組,求解可得a的值,代入z1,再由復數求模公式計算得答案.
解答 解:由復數z1=a+2i(a∈R),z2=3-4i,
則$\frac{{z}_{1}}{{z}_{2}}$=$\frac{a+2i}{3-4i}$=$\frac{(a+2i)(3+4i)}{(3-4i)(3+4i)}=\frac{(3a-8)+(4a+6)i}{25}$=$\frac{3a-8}{25}+\frac{4a+6}{25}i$,
∵$\frac{{z}_{1}}{{z}_{2}}$為純虛數,
∴$\left\{\begin{array}{l}{\frac{3a-8}{25}=0}\\{\frac{4a+6}{25}≠0}\end{array}\right.$,
解得:a=$\frac{8}{3}$.
則z1=a+2i=$\frac{8}{3}+2i$,
∴|z1|=$\sqrt{(\frac{8}{3})^{2}+{2}^{2}}=\frac{10}{3}$.
故答案為:$\frac{10}{3}$.
點評 本題考查了復數代數形式的乘除運算,考查了復數模的求法,是基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | P<M<N | B. | P>M>N | C. | M<P<N | D. | M>P>N |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com