A. | θ=$\frac{π}{12}$,t的最小值為$\frac{π}{12}$ | B. | θ=$\frac{π}{12}$,t的最小值為$\frac{π}{6}$ | ||
C. | θ=$\frac{π}{6}$,t的最小值為$\frac{π}{6}$ | D. | θ=$\frac{π}{6}$,t的最小值為$\frac{π}{12}$ |
分析 利用函數(shù)y A=sin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.
解答 解:將函數(shù)y=sin(2x+$\frac{π}{6}$)圖象上的點(diǎn)M(θ,$\frac{\sqrt{3}}{2}$)(0<θ<$\frac{π}{4}$)向右平移t(t>0)個(gè)單位長(zhǎng)度得到點(diǎn)M′,
故有sin(2θ+$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$,∴θ=$\frac{π}{12}$,點(diǎn)M′( θ+t,$\frac{\sqrt{3}}{2}$),即M′($\frac{π}{12}$+t,$\frac{\sqrt{3}}{2}$).
若M′位于函數(shù)y=sin2x的圖象上,則$\frac{\sqrt{3}}{2}$=sin2($\frac{π}{12}$+t),∴t的最小值為$\frac{π}{12}$,
故選:A.
點(diǎn)評(píng) 本題主要考查函數(shù)y A=sin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 8 | C. | $\frac{4}{3}$ | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b<c | B. | b<a<c | C. | a<c<b | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f($\frac{π}{6}$)>$\sqrt{2}$f($\frac{π}{4}$) | B. | $\sqrt{2}$sin1•f(1)>f($\frac{π}{4}$) | C. | f($\frac{π}{6}$)>$\sqrt{3}$f($\frac{π}{3}$) | D. | $\sqrt{2}$f($\frac{π}{4}$)>$\sqrt{3}$f($\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com