如圖1,在直角梯形ABCD中,AD∥BC,AD=AB=
2
,∠BAD=90°,∠BCD=45°,E為對角線BD的中點(diǎn).現(xiàn)將△ABD沿BD折起到△PBD的位置,使平面PBD⊥平面BCD,如圖2.
(Ⅰ)求證直線PE⊥平面BCD;
(Ⅱ)求異面直線BD和PC所成角的余弦值;
(Ⅲ)已知空間存在一點(diǎn)Q到點(diǎn)P,B,C,D的距離相等,寫出這個(gè)距離的值(不用說明理由).
考點(diǎn):異面直線及其所成的角,點(diǎn)、線、面間的距離計(jì)算
專題:綜合題,空間位置關(guān)系與距離,空間角
分析:(Ⅰ)由等腰三角形的性質(zhì)得PE⊥BD,由平面PBD⊥平面BCD,能證明直線PE⊥平面BCD.
(Ⅱ)建立空間直角坐標(biāo)系,利用向量法能求異面直線BD和PC所成角的余弦值;
(Ⅲ)設(shè)Q(x,y,z),由存在一點(diǎn)Q到點(diǎn)P,B,C,D的距離相等,利用空間向量兩點(diǎn)間距離公式求出Q(0,1,0),由此能求出這個(gè)距離.
解答: (Ⅰ)證明:∵E為BD的中點(diǎn),PB=PD,
∴PE⊥BD,
∵平面PBD⊥平面BCD,且平面PBD∩平面BCD=BD,
PE?平面PBD,
∴直線PE⊥平面BCD.
(Ⅱ)解:如圖所示,建立空間直角坐標(biāo)系,
依題意得E(0,0,0),B(1,0,0),C(-1,2,0),D(-1,0,0),P(0,0,1),
BD
=(-2,0,0),
PC
=(-1,2,-1),
∴cos<
BD
,
PC
>=
2
2
6
=
6
6

∴異面直線BD和PC所成角的余弦值為
6
6

(Ⅲ)空間存在一點(diǎn)Q到點(diǎn)P,B,C,D的距離相等,這個(gè)距離的值為
2
點(diǎn)評:本題考查直線與平面垂直的證明,考查平面與平面垂直的證明,考查距離的求法,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知無窮等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且a1,a2,a5成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)數(shù)列{bn}對任意n∈N*,都有a1b1+a2b2+…+anbn=an成立.
①求數(shù)列{bn}的通項(xiàng)公式;
②求數(shù)列{bnbn+1}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1≠0,2an=a1(1+Sn)(n∈N*),Sn為數(shù)列{an}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)bn=nSn,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex(x2-2ax-2a).
(Ⅰ)設(shè)a>-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)=ex(-
1
3
x3+x2-6a)
,討論關(guān)于x的方程f(x)=g(x)的實(shí)數(shù)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),a1=2,anan+1=m•4n,n∈N*,
(1)求m的值及數(shù)列{an}的通項(xiàng)公式;
(2)是否存在等差數(shù)列{bn},使得a1b1+a2b2+…+anbn=(3n-4)•2n+1+8對任意n∈N*都成立?若存在,求出數(shù)列{bn}的通項(xiàng)公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前項(xiàng)n和為Sn,若對于任意的正整數(shù)n都有Sn=2an-3n.
(1)設(shè)bn=an+3,求證:數(shù)列{bn}是等比數(shù)列,并求出{an}的通項(xiàng)公式.
(2)求數(shù)列{an-n}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,設(shè)內(nèi)角A、B、C的對邊分別為a、b、c,且cos(A+
π
4
)+cos(A-
π
4
)=
2
2

(1)求角A的大;
(2)若a=4,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
b
ax-1
+1(a>0,a≠1,b∈R)是奇函數(shù),且f(2)=
5
3

(1)求a,b的值;
(2)用定義證明f(x)在區(qū)間(0,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:函數(shù)f(x)=2x3-6x2在(0,2)內(nèi)是減函數(shù).

查看答案和解析>>

同步練習(xí)冊答案