已知函數(shù)f(x)=
b
ax-1
+1(a>0,a≠1,b∈R)是奇函數(shù),且f(2)=
5
3

(1)求a,b的值;
(2)用定義證明f(x)在區(qū)間(0,+∞)上是減函數(shù).
考點:函數(shù)單調(diào)性的判斷與證明,函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)函數(shù)的奇偶性的性質(zhì)以及(2)=
5
3
,建立方程關(guān)系即可求出a,b的值.
(2)根據(jù)定義法即可證明函數(shù)單調(diào)性.
解答: 解:(1)因為f(2)=
b
a2-1
+1=
5
3

所以
b
a2-1
=
2
3
①,
因為函數(shù)f(x)是奇函數(shù),
所以f(-2)=
b
a-2-1
+1=-f(2)=-
5
3

所以
ba2
1-a2
=-
8
3
②,
由①②可得a=±2(a=-2舍去),所以a=2,b=2.
(2)由(1)可得f(x)=
2
2x-1
+1
,
設(shè)0<x1<x2<+∞,
f(x1)-f(x2)=(
2
2x1-1
+1)-(
2
2x2-1
+1)
=
2(2x2-1)-2(2x1-1)
(2x1-1)(2x2-1)
=
2x2+1-2x1+1
(2x1-1)(2x2-1)

因為0<x1<x2<+∞,且y=2x在(0,+∞)為增函數(shù),
所以2x1-1>0,2x2-1>0,2x2+12x1+1
所以
2x2+1-2x1+1
(2x1-1)(2x2-1)
>0
,
所以f(x1)>f(x2),
所以f(x)在區(qū)間(0,+∞)上是減函數(shù).
點評:本題主要考查函數(shù)奇偶性和單調(diào)性的判斷和應(yīng)用,要求熟練掌握函數(shù)的性質(zhì)及其應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓具有性質(zhì):設(shè)M、N是圓C:x2+y2=r2關(guān)于原點對稱的兩個點,P是圓C上任意一點,直線PM,PN的斜率kPM,kPN存在,則kPM•kPN=-1,類比上述性質(zhì),在橢圓C:
x2
a2
+
y2
b2
=1中,寫出相類似的性質(zhì),并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在直角梯形ABCD中,AD∥BC,AD=AB=
2
,∠BAD=90°,∠BCD=45°,E為對角線BD的中點.現(xiàn)將△ABD沿BD折起到△PBD的位置,使平面PBD⊥平面BCD,如圖2.
(Ⅰ)求證直線PE⊥平面BCD;
(Ⅱ)求異面直線BD和PC所成角的余弦值;
(Ⅲ)已知空間存在一點Q到點P,B,C,D的距離相等,寫出這個距離的值(不用說明理由).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinωxcosωx=2
3
sin2ωx-
3
(ω>0)的最小正周期為π.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)將函數(shù)f(x)的圖象向左平移
π
3
個單位,再向上平移a(a>0)個單位,得到函數(shù)y=g(x)的圖象.若y=g(x)在區(qū)間[0,
π
4
]上的最大值與最小值的和為5,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC=A1B1C1中,AC⊥AB,AB=2AA1,M是AB的中點,△A1MC1是等腰三角形,D為CC1的中點,E為BC上一點且
CE
EB
=
1
3

(Ⅰ)證明:DE∥平面A1MC1;
(Ⅱ)若AB=2,求三棱錐E-A1MC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱柱ABCD-A1B1C1D1中,AB1⊥BC,AB∥CD,BC⊥AB且AA1=AB=AD=2,∠A1AB=∠DAB=60°.
(1)求證:AB1⊥平面A1BC;
(2)求該四棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

各項均不為零的數(shù)列{an}的前n項和為Sn,且an+3SnSn-1=0(n≥2),a1=
1
3

(1)求數(shù)列{an}的通項公式an
(2)若bn=
1 ,(n=1)
1
3(1-n)an
,(n≥2)
,設(shè)Tn=
1
b1+n
+
1
b2+n
+…+
1
bn+n
,若Tn>m對n≥2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱椎P-ABCD中,PD⊥平面ABCD,四邊形ABCD是邊長為2的菱形,∠ABC=
3
,PD=2
3
,E是PB的中點.
(Ⅰ)求證:平面AEC⊥平面PDB;
(Ⅱ)求三棱錐D-BCE的體積VD-BCE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),其中x∈R,f(1)=2,且f(x)在R上的導(dǎo)數(shù)滿足f′(x)<1,則不等式f(x2)<x2+1的解集為
 

查看答案和解析>>

同步練習(xí)冊答案