12.已知函數(shù)f(x)=ax+b有一個零點2,則方程bx2-ax=0的根是x=-$\frac{1}{2}$,或x=0.

分析 由函數(shù)f(x)=ax+b有一個零點2,可得:2a+b=0,(a≠0),代入方程bx2-ax=0,可得答案.

解答 解:∵函數(shù)f(x)=ax+b有一個零點2,
∴2a+b=0,即b=-2a,(a≠0),
則方程bx2-ax=0可化為:-2ax2-ax=0,
解得:x=-$\frac{1}{2}$,或x=0,
故方程bx2-ax=0的根是x=-$\frac{1}{2}$,或x=0,
故答案為:x=-$\frac{1}{2}$,或x=0

點評 本題考查的知識點是函數(shù)的零點,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知tanα=2,
 (1)求tan(α+$\frac{π}{4}$)的值.
 (2)求$\frac{cos(\frac{3π}{2}+2α)}{si{n}^{2}α+sinαcosα-cos2α-1}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}滿足a1=1,|an+1-an|=pn,n∈N+.若{an}是遞增數(shù)列,且a1,2a2,3a3成等差數(shù)列,求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若f(x)是二次函數(shù),且滿足f(0)=3,f(x-1)-f(x)=-4x,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)為T=2的周期函數(shù),在區(qū)間[-1,1]上,f(x)=$\left\{\begin{array}{l}{ax+1,x∈[-1,0]}\\{\frac{bx+2}{x+1},x∈[0,1]}\end{array}\right.$,其中a,b∈R,若f($\frac{1}{2}$)=f($\frac{3}{2}$),求a+3b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求值:$\root{3}{1+\frac{2}{3}\sqrt{\frac{7}{3}}}$+$\root{3}{1-\frac{2}{3}\sqrt{\frac{7}{3}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知在△ABC中,A=60°,$\frac{BC}{AB}$=$\frac{5}{2}$,則sinC=$\frac{\sqrt{3}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{{2}^{x+1}+a}{{2}^{x}+1}$(其中a為常數(shù))是定義在R上的奇函數(shù).
(1)求a的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明;
(3)若(2t+1)f(t)+m•4t≥1對于任意實數(shù)t∈[1,2]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知cos(α+$\frac{π}{3}$)=$\frac{1}{3}$,則cos($\frac{π}{3}$-2α)=( 。
A.$\frac{7}{9}$B.-$\frac{7}{9}$C.$\frac{1}{9}$D.-$\frac{1}{9}$

查看答案和解析>>

同步練習(xí)冊答案