7.如果函數(shù)f(x)滿足:對(duì)任意實(shí)數(shù)a,b都有f(a+b)=f(a)f(b),且f(1)=1,則$\frac{f(2)}{f(1)}+\frac{f(3)}{f(2)}+\frac{f(4)}{f(5)}+…+\frac{f(2015)}{f(2014)}$=2014.

分析 由已知得$\frac{f(n+1)}{f(n)}=\frac{f(n)}{f(n)}=1$,由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)滿足:對(duì)任意實(shí)數(shù)a,b都有f(a+b)=f(a)f(b),且f(1)=1,
∴$\frac{f(2)}{f(1)}+\frac{f(3)}{f(2)}+\frac{f(4)}{f(5)}+…+\frac{f(2015)}{f(2014)}$
=$\frac{f(1+1)}{f(1)}+\frac{f(2+1)}{f(2)}+…+\frac{f(2014+1)}{f(2014)}$
=$\frac{f(1)}{f(1)}+\frac{f(2)}{f(2)}+…+\frac{f(2014)}{f(2014)}$
=1×2014
=2014.
故答案為:2014.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題的關(guān)鍵是得到$\frac{f(n+1)}{f(n)}=\frac{f(n)}{f(n)}=1$.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求y=2cos($\frac{π}{5}$-2x)+1的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.雙曲線$\frac{x^2}{2}-\frac{y^2}{4}=1$的一個(gè)焦點(diǎn)F到其漸近線的距離為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知數(shù)列{an}中,a1=3,a2=6,an+2=2an+1-an,則a2011=6033.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.等差數(shù)列{an}中,a1=1,a7=-23,若數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和為-$\frac{14}{55}$,則n=( 。
A.14B.15C.16D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.紅、藍(lán)兩色車、馬、炮棋子各一枚,將這6枚棋子排成一列,記事件:每對(duì)同字的棋子中,均為紅棋子在前,藍(lán)棋子在后為事件A,則事件A發(fā)生的概率為(  )
A.$\frac{1}{20}$B.$\frac{1}{12}$C.$\frac{1}{8}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若某幾何體的三視圖如圖所示,則此幾何體的體積等于(  )
A.$\frac{75}{2}$B.30C.75D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知b=2,B=$\frac{π}{6}$,C=$\frac{π}{4}$,求:(1)c,a的值(2)△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=(x+2)n+(x-2)n,其中$n=3\int_{-\frac{π}{2}}^{\frac{π}{2}}{cosxdx}$,則f(x)的展開式中x4的系數(shù)為( 。
A.120B.-120C.60D.0

查看答案和解析>>

同步練習(xí)冊(cè)答案