5.已知點(diǎn)A(1,2)是二元一次不等式2x-By+3≥0所對應(yīng)的平面區(qū)域內(nèi)的一點(diǎn),求實(shí)數(shù)B的取值范圍.

分析 由點(diǎn)A(1,2)是二元一次不等式2x-By+3≥0所對應(yīng)的平面區(qū)域內(nèi)的一點(diǎn),得到A的坐標(biāo)滿足不等式,求出B的范圍.

解答 解:因?yàn)辄c(diǎn)A(1,2)是二元一次不等式2x-By+3≥0所對應(yīng)的平面區(qū)域內(nèi)的一點(diǎn),
所以2-2B+3≥0,解得B≤2.5;
所以實(shí)數(shù)B的取值范圍是B≤2.5.

點(diǎn)評 本題考查了二元一次不等式表示的幾何意義;關(guān)鍵是由題意得到關(guān)于B的不等式解之.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=lnx+(x-a)2
(1)若a>0,且f(x)存在極值,求實(shí)數(shù)a的取值范圍
(2)在(1)條件下,求證:f(x)的所有極值一和大于ln$\frac{e}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知向量$\overrightarrow{a}$、$\overrightarrow$的夾角為θ,|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$,|$\overrightarrow{a}$-$\overrightarrow$|=1,則θ的取值范圍是( 。
A.$\frac{π}{6}≤θ≤\frac{π}{2}$B.$\frac{π}{3}≤θ≤\frac{π}{2}$C.$0≤θ≤\frac{π}{3}$D.$0<θ<\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知梯形ABCD,如圖所示,其中AB∥CD,且DC=2AB,三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,2)、B(2,1)、C(4,2),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若2×4a-2a×3b+2×9b=2a+3b+1,求2a+3b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx-m(x-1).若函數(shù)f(x)在點(diǎn)[$\frac{1}{2}$,f($\frac{1}{2}$)]處的切線與直線y+x+1=0相互垂直.
(1)求m的值.
(2)求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.?dāng)?shù)列{cn}為等比數(shù)列,其中c1=2,c8=4,f(x)=x(x-c1)(x-c2)…(x-c8),f′(x)為函數(shù)f(x)的導(dǎo)函數(shù),則f′(0)=( 。
A.0B.26C.29D.212

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)若a<$\frac{sinx}{x}$<b對x∈(0,$\frac{π}{2}$)恒成立,求a的最大值與b的最小值.
(2)證明:sin$\frac{π}{{2}^{2}}$+sin$\frac{π}{{3}^{2}}$+…+sin$\frac{π}{{n}^{2}}$>$\frac{n-1}{n+1}$,n≥2,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=alnx-ax-3,a∈R,
(Ⅰ)當(dāng)a=1時(shí),求f(x)的極值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.
(Ⅲ)若函數(shù)f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對任意的t∈[1,2],函數(shù)$g(x)={x^3}+{x^2}[{f'(x)+\frac{m}{2}}]$在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m取值范圍.

查看答案和解析>>

同步練習(xí)冊答案