20.如圖,在長方體ABCD-A1B1C1D1中,AB=AD=4cm,AA1=2cm,設(shè)平面AB1D1與平面ABCD所成二面角為θ,tanθ=$\frac{1}{2}$.

分析 以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出平面AB1D1與平面ABCD所成二面角的正切值.

解答 解:以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,
A(4,0,0),B1(4,4,0),${D}_{1}\stackrel{\;}{\;}$(0,0,2),
$\overrightarrow{A{B}_{1}}$=(0,4,0),$\overrightarrow{A{D}_{1}}$=(-4,0,2),
設(shè)平面AB1D1的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{A{B}_{1}}=4y=0}\\{\overrightarrow{n}•\overrightarrow{A{D}_{1}}=-4x+2z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,2),
平面ABCD的法向量$\overrightarrow{m}$=(0,0,1),
∵平面AB1D1與平面ABCD所成二面角為θ,
∴cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{5}}$,sinθ=$\sqrt{1-(\frac{2}{\sqrt{5}})^{2}}$=$\frac{1}{\sqrt{5}}$,
tanθ=$\frac{sinθ}{cosθ}$=$\frac{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}}$=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點評 本題考查二面角的正切值的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知cos(α-$\frac{π}{6}$)+sinα=$\frac{{4\sqrt{3}}}{5}$,則cos(α+$\frac{2π}{3}$)的值是-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知圓的方程為x2+y2+2y=0,則其半徑和圓心坐標(biāo)分別是1;(0,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=sinωx-cosωx(ω>0),z∈R,若函數(shù)f(x)在(-ω,ω)上是增函數(shù),且圖象關(guān)于直線x=-ω對稱,則ω=$\frac{\sqrt{π}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.根據(jù)我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.求得144,28的最大公約數(shù)為( 。
A.4B.2C.0D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知向量$\overrightarrow a=(λ,{λ^2}-{sin^2}α)$,$\overrightarrow b=(μ-1,μ+cosα)$,其中λ,μ,α為實數(shù),且$\overrightarrow a=-2\overrightarrow b$,
(1)求μ的取值范圍;
(2)求$\frac{λ^2}{μ}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.四棱錐P-ABCD中,底面ABCD為菱形,$∠DAB=\frac{π}{3}$,PD⊥底面ABCD,AB=PD=a,P、B、C、D,四點能否在一個球面上(不要證明);
(1)求異面直線PA與CD成角的余弦值;
(2)求三棱錐ABCP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下面流程圖表示的算法是( 。
A.輸出c,b,aB.輸出最大值C.輸出最小值D.比較a,b,c大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若扇形的周長等于40cm,則扇形面積的最大值是( 。ヽm2
A.400B.200C.100D.50

查看答案和解析>>

同步練習(xí)冊答案