已知曲線的方程為:,為常數(shù)).
(1)判斷曲線的形狀;
(2)設(shè)曲線分別與軸、軸交于點(diǎn)、、不同于原點(diǎn)),試判斷的面積是否為定值?并證明你的判斷;
(3)設(shè)直線與曲線交于不同的兩點(diǎn)、,且,求曲線的方程.

(1)圓;(2)詳見解析;(3).

解析試題分析:(1)在曲線的方程兩邊同時(shí)除以,并進(jìn)行配方得到,從而得到曲線的具體形狀;(2)在曲線的方程中分別令求出點(diǎn)、的坐標(biāo),再驗(yàn)證的面積是否為定值;(3)根據(jù)條件得到圓心在線段的垂直平分線上,并且得到圓心與原點(diǎn)的連線與直線垂直,利用兩條直線斜率乘積為,求出值,并利用直線與圓相交作為檢驗(yàn)條件,從而確定曲線的方程.
試題解析:(1)將曲線的方程化為,
可知曲線是以點(diǎn)為圓心,以為半徑的圓;
(2)的面積為定值.
證明如下:
在曲線的方程中令,得點(diǎn)
在曲線方程中令,得點(diǎn),
(定值);
(3)過(guò)坐標(biāo)原點(diǎn),且,
圓心的垂直平分線上,,,
當(dāng)時(shí),圓心坐標(biāo)為,圓的半徑為,
圓心到直線的距離,
直線與圓相離,不合題意舍去,
,這時(shí)曲線的方程為.
考點(diǎn):1.圓的方程;2.三角形的面積;3.直線與圓的位置關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)P(-2,-3),圓C:,過(guò)P點(diǎn)作圓C的兩條切線,切點(diǎn)分別為A、B
(1)求過(guò)P、A、B三點(diǎn)的外接圓的方程;
(2)求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C:x2+y2+2x-4y+3=0,若圓C的切線在x軸、y軸上的截距相等,求切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

己知圓C:(x-xo)2+(y-y0)2=R2(R>0)與y軸相切,圓心C在直線l:x-3y=0上,且圓C截直線m:x-y=0所得的弦長(zhǎng)為2,求圓C方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,為圓的直徑,為垂直的一條弦,垂足為,弦.
(1)求證:、、、四點(diǎn)共圓;
(2)若,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四邊形為邊長(zhǎng)為a的正方形,以D為圓心,DA為半徑的圓弧與以BC為直徑的圓O交于F,連接CF并延長(zhǎng)交AB于點(diǎn)E.
 
(1).求證:E為AB的中點(diǎn);
(2).求線段FB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知以點(diǎn)為圓心的圓與直線相切,過(guò)點(diǎn)的動(dòng)直線與圓相交于兩點(diǎn).
(1)求圓的方程;
(2)當(dāng)時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一個(gè)圓.
(1)求實(shí)數(shù)m的取值范圍;
(2)求該圓半徑r的取值范圍;
(3)求圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓C=1(a>b>0)的離心率為,以坐標(biāo)原點(diǎn)為圓心,橢圓C的短半軸長(zhǎng)為半徑的圓與直線xy+2=0相切.

(1)求橢圓C的方程;
(2)已知點(diǎn)P(0,1),Q(0,2),設(shè)M,N是橢圓C上關(guān)于y軸對(duì)稱的不同兩點(diǎn),直線PMQN相交于點(diǎn)T.求證:點(diǎn)T在橢圓C上.

查看答案和解析>>

同步練習(xí)冊(cè)答案