【題目】(1)已知P是矩形ABCD所在平面上的一點,則有.試證明該命題.
(2)將上述命題推廣到P為空間上任一點的情形,寫出這個推廣后的命題并加以證明.
(3)將矩形ABCD進(jìn)一步推廣到長方體,并利用(2)得到的命題建立并證明一個新命題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有四個小球,分別寫有“美、麗、中、國”四個字,有放回地從中任取一個小球,直到“中”“國”兩個字都取到就停止,用隨機(jī)模擬的方法估計恰好在第三次停止的概率.利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“中、國、美、麗”這四個字,以每三個隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):
232 321 230 023 123 021 132 220 001
231 130 133 231 031 320 122 103 233
由此可以估計,恰好第三次就停止的概率為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的右焦點為,左頂點為,線段的中點為,圓過點,且與交于, 是等腰直角三角形,則圓的標(biāo)準(zhǔn)方程是____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知圓過點,且與直線相切于點,求圓的方程;
(2)已知圓與軸相切,圓心在直線上,且圓被直線截得的弦長為,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果從北大打車到北京車站去接人,聰明的專家一定會選擇走四環(huán)。雖然從城中間直穿過去看上去很誘人,但考慮到北京的道路幾乎總是正南正北的方向,事實上不會真有人認(rèn)為這樣走能抄近路。在城市中,專家估算兩點之間的距離時,不會直接去測量兩點之間的直線距離,而會去考慮它們相距多少個街區(qū)。在理想模型中,假設(shè)每條道路都是水平或者豎直的,那么只要你朝著目標(biāo)走(不故意繞遠(yuǎn)路),不管你這樣走,花費的路程都是一樣的。出租車幾何學(xué)(taxicab geometry),所謂的“出租車幾何學(xué)”是由十九世紀(jì)的另一位真專家赫爾曼-閔可夫斯基所創(chuàng)立的。在出租車幾何學(xué)中,點還是形如的有序?qū)崝?shù)對,直線還是滿足的所有組成的圖形,角度大小的定義也和原來一樣。只是直角坐標(biāo)系內(nèi)任意兩點,定義它們之間的一種“距離”:,請解決以下問題:
(1)定義:“圓”是所有到定點“距離”為定值的點組成的圖形,求“圓周”上的所有點到點的“距離”均為的“圓”方程,并作出大致圖像;
(2)在出租車幾何學(xué)中,到兩點、“距離”相等的點的軌跡稱為線段的“垂直平分線”,已知點,,;
①寫出在線段的“垂直平分線”的軌跡方程,并寫出大致圖像;
②求證:三邊的“垂直平分線”交于一點(該點稱為的“外心”),并求出的“外心”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】楊輝三角,是二項式系數(shù)在三角形中的一種幾何排列.在歐洲,這個表叫做帕斯卡三角形,帕斯卡(1623-1662)是在1654年發(fā)現(xiàn)這一規(guī)律的.我國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,這是我國數(shù)學(xué)史上的一個偉大成就.如圖所示,在“楊輝三角”中,去除所有為1的項,依次構(gòu)成數(shù)列,則此數(shù)列前135項的和為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2012年“雙節(jié)”期間,高速公路車輛較多某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們在某段高速公路的車速分成六段:,,,,后得到如圖的頻率分布直方圖.
某調(diào)查公司在采樣中,用到的是什么抽樣方法?
求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計值.
若從車速在的車輛中任抽取2輛,求車速在的車輛至少有一輛的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著電子閱讀的普及,傳統(tǒng)紙質(zhì)媒體遭受到了強(qiáng)烈的沖擊.某雜志社近9年來的紙質(zhì)廣告收入如下表所示:
根據(jù)這9年的數(shù)據(jù),對和作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.243;
根據(jù)后5年的數(shù)據(jù),對和作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.984.
(1)如果要用線性回歸方程預(yù)測該雜志社2019年的紙質(zhì)廣告收入,現(xiàn)在有兩個方案,
方案一:選取這9年數(shù)據(jù)進(jìn)行預(yù)測,方案二:選取后5年數(shù)據(jù)進(jìn)行預(yù)測.
從實際生活背景以及線性相關(guān)性檢驗的角度分析,你覺得哪個方案更合適?
附:相關(guān)性檢驗的臨界值表:
(2)某購物網(wǎng)站同時銷售某本暢銷書籍的紙質(zhì)版本和電子書,據(jù)統(tǒng)計,在該網(wǎng)站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質(zhì)版本和電子書同時購買的讀者比例為,現(xiàn)用此統(tǒng)計結(jié)果作為概率,若從上述讀者中隨機(jī)調(diào)查了3位,求購買電子書人數(shù)多于只購買紙質(zhì)版本人數(shù)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com