log3
3
=(  )
A、1
B、
1
2
C、-
1
2
D、-2
考點:對數(shù)的運算性質
專題:計算題
分析:根據(jù)導數(shù)的運算性質,求出即可.
解答: 解:
log
3
3
=
log
3
1
2
3
=
1
2
,
故選:B.
點評:本題考查了對數(shù)的運算,是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}、{bn}滿足a1=1,且an,an+1是函數(shù)f(x)=x2-bnx+2n的兩個零點,則b10等于( 。
A、24B、32C、48D、64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是R上的偶函數(shù),且在[0,+∞)上遞減,若f(
1
2
)=0,若f(log 
1
4
x)>0,那么x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,設A(3,2),B(-2,-3),沿y軸把坐標平面折成120°的二面角后,AB的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,將兩個全等的30°的直角三角形ABC和直角三角形ADC拼在一起組成平面四邊形ABCD,若
DB
=x
DA
+y
DC
,則x,y分別等于( 。
A、
3
2
,
3
2
B、
3
2
,
1
2
C、
3
2
,
3
2
D、
1
2
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=f(x),f(
1
2
)=4
,對任意實數(shù)x,y滿足:f(x+y)=f(x)+f(y)-3
(Ⅰ)當n∈N*時求f(n)的表達式;
(Ⅱ)若b1=1,bn+1=
bn
1+bn•f(n-1)
(n∈N*)
,求bn;
(Ⅲ)記c n=
4bn
(n∈N*)
,試證c1+c2+…+c2014<89.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an=cos
2n
3
π+sin
2n
3
π,n∈N+
,則a1+a2+a3+…+a2014=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
e
0
π(lnx)2dx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=loga(2+x),g(x)=loga(2-x),a>0且a≠1且設h(x)=f(x)-g(x).
(Ⅰ)求函數(shù)h(x)的定義域;
(Ⅱ)判斷h(x)的奇偶性,并加以證明;
(Ⅲ)當f(x)>g(x)時,求x的取值范圍.

查看答案和解析>>

同步練習冊答案