已知函數(shù)f(x)=sin +2cos2x-1(x∈R).
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c,已知函數(shù)f(x)的圖象經(jīng)過點,b,a,c成等差數(shù)列,且·=9,求a的值.
(1)(k∈Z)(2)a=3
【解析】f(x)=sin +2cos 2x-1=-cos 2x+sin 2x+cos 2x=cos 2x+sin 2x=sin .
(1)最小正周期T==π,由2kπ-≤2x+≤2kπ+ (k∈Z),得kπ-≤x≤kπ+ (k∈Z),所以f(x)的單調(diào)遞增區(qū)間為 (k∈Z).
(2)由f(A)=sin =得2A+=+2kπ或+2kπ(k∈Z),即A=kπ或A=+kπ,又A為△ABC的內(nèi)角,所以A=.
又因為b,a,c成等差數(shù)列,所以2a=b+c.
∵·=bccos A=bc=9,∴bc=18,∴cos A==-1=-1=-1.∴a=3
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練倒數(shù)第10天練習(xí)卷(解析版) 題型:選擇題
命題“存在一個無理數(shù),它的平方是有理數(shù)”的否定是( ).
A.任意一個有理數(shù),它的平方是有理數(shù)
B.任意一個無理數(shù),它的平方不是有理數(shù)
C.存在一個有理數(shù),它的平方是有理數(shù)
D.存在一個無理數(shù),它的平方不是有理數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練3-x4練習(xí)卷(解析版) 題型:選擇題
如果右邊程序框圖的輸出結(jié)果是6,那么在判斷框中①表示的“條件”應(yīng)該是( ).
A.i≥3 B.i≥4
C.i≥5 D.i≥6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練3-x1練習(xí)卷(解析版) 題型:選擇題
若cos =,則cos =( ).
A.- B.- C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練3-d4練習(xí)卷(解析版) 題型:解答題
已知F1,F2分別為橢圓C1:=1(a>b>0)的上下焦點,其中F1是拋物線C2:x2=4y的焦點,點M是C1與C2在第二象限的交點,且|MF1|=.
(1)試求橢圓C1的方程;
(2)與圓x2+(y+1)2=1相切的直線l:y=k(x+t)(t≠0)交橢圓于A,B兩點,若橢圓上一點P滿足,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練3-d3練習(xí)卷(解析版) 題型:解答題
一個袋子裝有大小形狀完全相同的9個球,其中5個紅球編號分別為1,2,3,4,5,4個白球編號分別為1,2,3,4,從袋中任意取出3個球.
(1)求取出的3個球編號都不相同的概率;
(2)記X為取出的3個球中編號的最小值,求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練2-1練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=sincos+sin2 (其中ω>0,0<φ<).其圖象的兩個相鄰對稱中心的距離為,且過點.
(1)函數(shù)f(x)的解析式;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,a=,S△ABC=2,角C為銳角.且滿足f=,求c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-9練習(xí)卷(解析版) 題型:選擇題
設(shè)P為橢圓=1上的一點,F1,F2分別是該橢圓的左、右焦點,若|PF1|∶|PF2|=2∶1,則△PF1F2的面積為( ).
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-7練習(xí)卷(解析版) 題型:選擇題
已知實數(shù)x,y滿足則目標(biāo)函數(shù)z=x-y的最小值為( ).
A.-2 B.5 C.6 D.7
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com