13.已知函數(shù)f(x)=xetx-ex+1,其中t∈R,e=2.71828…是自然對數(shù)的底數(shù).
(Ⅰ)當t=0時,求f(x)的最大值;
(Ⅱ)若方程f(x)=1無實數(shù)根,求實數(shù)t的取值范圍;
(Ⅲ)若函數(shù)f(x)是(0,+∞)內(nèi)的減函數(shù),求實數(shù)t的取值范圍.

分析 (Ⅰ)當t=0時,求導數(shù),確定函數(shù)的單調(diào)性,即可求函數(shù)f(x)的最大值;
(Ⅱ)先確定原方程無負實數(shù)根,令g(x)=$\frac{lnx}{x}$,求出函數(shù)的值域,方程f(x)=1無實數(shù)根,等價于1-t∉(-∞,$\frac{1}{e}$],即可證明結(jié)論;
(Ⅲ)利用函數(shù)f(x)是(0,+∞)內(nèi)的減函數(shù),確定t<1,再分類討論,即可求實數(shù)t的取值范圍.

解答 解:(Ⅰ)當t=0時,f(x)=x-ex+1,
∴f′(x)=1-ex
∴x<0,f′(x)>0;x>0,f′(x)<0,
∴函數(shù)f(x)在(-∞,0)上單調(diào)遞增,在(0,+∞)上單調(diào)遞減,
∴函數(shù)f(x)的最大值為f(0)=0;
(Ⅱ)由f(x)=1,可得x=ex(1-t)>0,
∴原方程無負實數(shù)根,
故有 $\frac{lnx}{x}$=1-t.
令g(x)=$\frac{lnx}{x}$,則g′(x)=$\frac{1-lnx}{{x}^{2}}$,
∴0<x<e,g′(x)>0;x>e,f′(x)<0,
∴函數(shù)g(x)在(0,e)上單調(diào)遞增,在(e,+∞)上單調(diào)遞減,
∴函數(shù)g(x)的最大值為g(e)=$\frac{1}{e}$,
∴函數(shù)g(x)的值域為(-∞,$\frac{1}{e}$];
方程f(x)=1無實數(shù)根,等價于1-t∉(-∞,$\frac{1}{e}$],
∴1-t>$\frac{1}{e}$,
∴t<1-$\frac{1}{e}$,
∴當t<1-$\frac{1}{e}$時,方程f(x)=1無實數(shù)根
(Ⅲ)f′(x)=etx[1+tx-e(1-t)x],
由題設,x>0,f′(x)≤0,
不妨取x=1,則f′(1)=et(1+t-e1-t)≤0,
t≥1時,e1-t≤1,1+t≤2,不成立,∴t<1.
①t≤$\frac{1}{2}$,x>0時,f′(x)=etx[1+tx-e(1-t)x]≤${e}^{\frac{x}{2}}$(1+$\frac{x}{2}$-${e}^{\frac{x}{2}}$),
由(Ⅰ)知,x-ex+1<0,
∴1+$\frac{x}{2}$-${e}^{\frac{x}{2}}$<0,∴f′(x)<0,
∴函數(shù)f(x)是(0,+∞)內(nèi)的減函數(shù);
②$\frac{1}{2}$<t<1,$\frac{t}{1-t}$>1,∴$\frac{1}{1-t}$ln$\frac{t}{1-t}$>0,
令h(x)=1+tx-e(1-t)x,則h(0)=0,h′(x)=(1-t)[$\frac{t}{1-t}$-e(1-t)x]
0<x<$\frac{1}{1-t}$ln $\frac{t}{1-t}$,h′(x)>0,
∴h(x)在(0,$\frac{1}{1-t}$ln $\frac{t}{1-t}$)上單調(diào)遞增,
∴h(x)>h(0)=0,此時,f′(x)>0,
∴f(x)在(0,$\frac{1}{1-t}$ln $\frac{t}{1-t}$)上單調(diào)遞增,有f(x)>f(0)=0與題設矛盾,
綜上,當且僅當t≤$\frac{1}{2}$時,函數(shù)f(x)是(0,+∞)內(nèi)的減函數(shù).

點評 本題考查導數(shù)知識的綜合運用,考查函數(shù)的單調(diào)性與最值,考查學生分析解決問題的能力,難度大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.已知不等式組$\left\{\begin{array}{l}x-y+k≥0\\ 3x-y-6≤0\\ x+y+6≥0\end{array}\right.$表示的平面區(qū)域恰好被圓C:(x-3)2+(y-3)2=r2所覆蓋,則實數(shù)k=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)$f(x)=x-\sqrt{1-2x}$( 。
A.有最小值$\frac{1}{2}$,無最大值B.有最大值$\frac{1}{2}$,無最小值
C.有最小值$\frac{1}{2}$,有最大值2D.無最大值,也無最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.給出下列四個命題:
①集合{x||x|<0}為空集是必然事件;
②y=f(x)是奇函數(shù),則f(0)=0是隨機事件;
③若loga(x-1)>0,則x>1是必然事件;
④對頂角不相等是不可能事件.
其中正確命題是①②③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設Sn是等比數(shù)列{an}的前n項和,滿足S3,S2,S4成等差數(shù)列,已知a1+2a3+a4=4.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列{bn},滿足bn=$\frac{1}{{{{log}_2}|{a_n}|}}$,n∈N*,記Tn=b1b2+b2b3+b3b4+…+bnbn+1,n∈N*,若對于任意n∈N*,都有aTn<n+4恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知雙曲線C:$\frac{x^2}{25}$-$\frac{y^2}{11}$=1的左右焦點分別為F1,F(xiàn)2,P為C的右支上一點,且|PF2|=|F1F2|,則△PF1F2的面積等于( 。
A.$22\sqrt{6}$B.$22\sqrt{23}$C.$11\sqrt{23}$D.$11\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若實數(shù)a,b滿足a+b=2,則2a+2b的最小值是4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow$=(cosy,siny),若y=x+$\frac{4π}{3}$,則$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$夾角的余弦為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)和f(x+1)都是定義在R上的偶函數(shù),若x∈[0,1]時,f(x)=($\frac{1}{2}$)x,則(  )
A.f(-$\frac{1}{3}$)>f($\frac{5}{2}$)B.f(-$\frac{1}{3}$)<f($\frac{5}{2}$)C.f(-$\frac{1}{3}$)=f($\frac{5}{2}$)D.f(-$\frac{1}{3}$)<f($\frac{9}{2}$)

查看答案和解析>>

同步練習冊答案