16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F,C與過(guò)原點(diǎn)的直線相交于A,B兩點(diǎn),連接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=$\frac{4}{5}$,則C的離心率為$\frac{5}{7}$.

分析 由題意畫出圖形,利用余弦定理求出|AF|,可得則四邊形AFBF′為矩形,結(jié)合橢圓的對(duì)稱性求得a,c的值,則橢圓的離心率可求.

解答 解:由題意畫出圖形,

在△AFB中,由|AB|=10,|BF|=8,cos∠ABF=$\frac{4}{5}$,
結(jié)合余弦定理可得|AF|=6,∴有|AF|2+|BF|2=|AB|2,
則三角形AFB為Rt△,連接AF′,BF′,則四邊形AFBF′為矩形,
∴2a=6+8=14,2c=10,則a=7,c=5.
∴C的離心率為$\frac{5}{7}$.
故答案為:$\frac{5}{7}$.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查了數(shù)形結(jié)合的解題思想方法,關(guān)鍵是注意橢圓對(duì)稱性的應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知2x=7y=t,且$\frac{1}{x}$+$\frac{1}{y}$=2,則t的值為( 。
A.14B.$\sqrt{14}$C.7D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知全集U=R,集合A={x|1≤x-1<3},B={x|2x-9≥6-3x}求:
(1)A∪B;
(2)∁U(A∩B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.“(x-4)(x+1)≥0”是“$\frac{x-4}{x+1}≥0$”的(  )條件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.定義在R上的函數(shù)f(x)滿足f(x+y)=f(x)+f(y)+2xy,f(1)=2,則f(3)=( 。
A.6B.8C.12D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.(1)已知函數(shù)f(x)的定義域?yàn)閇0,1],求f(x2-1)的定義域;
(2)已知函數(shù)f(2x-1)的定義域?yàn)閇0,1),求f(1-3x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某班有30名同學(xué)參加數(shù)學(xué)競(jìng)賽,他們的成績(jī)統(tǒng)計(jì)如表所示,若此次競(jìng)賽成績(jī)?cè)?0分及以上為優(yōu)秀,低于80分為非優(yōu)秀.
編號(hào)性別得分編號(hào)性別得分編號(hào)性別得分
19311652188
29512882282
38713712375
48214832462
58015792578
69216652683
77317852799
87418772869
97619982973
107220813075
(1)請(qǐng)你根據(jù)上述數(shù)據(jù)完成下列2×2的列聯(lián)表,判斷是否能在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為數(shù)學(xué)競(jìng)賽成績(jī)和性別有關(guān).
優(yōu)秀非優(yōu)秀合計(jì)
合計(jì)
(2)從這些男生中任取3人,記成績(jī)優(yōu)秀的人數(shù)為X,求X的分布列及數(shù)學(xué)期望,下面是臨界值表供參考:
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖所示是一樣本的頻率分布直方圖,則由圖形中的數(shù)據(jù),可以估平均數(shù)與中位數(shù)分別是( 。
A.12.5、12.5B.12.5、13C.13、12.5D.13、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知數(shù)列$\sqrt{2}$、$\sqrt{6}$、$\sqrt{10}$、$\sqrt{14}$,3$\sqrt{2}$…那么$\sqrt{26}$是這個(gè)數(shù)列的第( 。╉(xiàng).
A.5B.6C.7D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案