4.“(x-4)(x+1)≥0”是“$\frac{x-4}{x+1}≥0$”的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

分析 結(jié)合不等式的解集,利用充分條件和必要條件的定義進行判斷.

解答 解:由“(x-4)(x+1)≥0”解得x≤-1或x≥4,
由“$\frac{x-4}{x+1}≥0$”解得x<-1或x≥4,
∴“(x-4)(x+1)≥0”是“$\frac{x-4}{x+1}≥0$”的必要不充分條件,
故選:B.

點評 本題主要考查充分條件和必要條件的判斷,利用不等式的關系是解決本題的關鍵,比較基礎

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知f(x)是定義在R上的奇函數(shù),且滿足f(x+4)=f(x),當x∈(2,4)時,f(x)=|x-3|,則f(1)+f(2)+f(3)+f(4)=(  )
A.1B.0C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若函數(shù)f(x)=2x+3,函數(shù)g(x)=${x^{\frac{1}{3}}}$,f(g(27))的值是9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設函數(shù)f (x)的定義域為I,若對?x∈I,都有f(x)<x,則稱f(x)為T-函數(shù);
若對?x∈I,都有f[f(x)]<x,則稱f(x)為Γ一函數(shù).給出下列命題:
①f (x)=ln(l+x)(x≠0)為τ-函數(shù);
②f (x)=sinx (0<x<π)為Γ一函數(shù);
③f (x)為τ-函數(shù)是(x)為Γ一函數(shù)的充分不必要條件;
④?a∈R,使得f (x)=ax2-1既是τ一函數(shù)又是Γ一函數(shù).
其中真命題有①②④.(把你認為真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.空間中的一條線段PQ,在其俯視圖和側(cè)視圖中,該線段的投影的長度分別恒為1和2,則線段PQ長的取值范圍是[2,$\sqrt{5}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=$\sqrt{3}sinωxsin(ωx+\frac{π}{2})-{cos^2}ωx+\frac{1}{2}$(ω>0)的周期為π.
(1)求ω.
(2)若將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個單位后,再將得到的圖象上各點橫坐標伸長到原來的4倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F,C與過原點的直線相交于A,B兩點,連接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=$\frac{4}{5}$,則C的離心率為$\frac{5}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,等腰△ABC為⊙O內(nèi)接三角形,且頂角∠A=30°,⊙O半徑r=6cm,求:
(1)$\widehat{BC}$的長度;
(2)如圖陰影部分弓形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為45°,且|$\overrightarrow{a}$|=4,($\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow$)•(2$\overrightarrow{a}$-3$\overrightarrow$)=12.
(1)求|$\overrightarrow$|
(2)求$\overrightarrow$在$\overrightarrow{a}$方向上的投影.

查看答案和解析>>

同步練習冊答案