考點:對數(shù)函數(shù)的單調(diào)性與特殊點
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先根據(jù)對數(shù)函數(shù)的真數(shù)大于零求定義域,再把復(fù)合函數(shù)分成二次函數(shù)和對數(shù)函數(shù),分別在定義域內(nèi)判斷兩個基本初等函數(shù)的單調(diào)性,再由“同增異減”求原函數(shù)的遞增區(qū)間
解答:
解:要使函數(shù)有意義,則6-x-x
2>0,解得-3<x<2,故函數(shù)的定義域是(-3,2),
令t=-x
2-x+6=-(x+
)
2+
,則函數(shù)t在(-3,-
)上遞增,在[-
,2)上遞減,
又因y=log
t在定義域上單調(diào)遞減,
故由復(fù)合函數(shù)的單調(diào)性知y=log
(6-x-x
2)的調(diào)遞增區(qū)間是[-
,2).
故答案為:
[-,2)
點評:本題的考點是復(fù)合函數(shù)的單調(diào)性,對于對數(shù)函數(shù)需要先求出定義域,這也是容易出錯的地方;再把原函數(shù)分成幾個基本初等函數(shù)分別判斷單調(diào)性,再利用“同增異減”求原函數(shù)的單調(diào)性.