10.數(shù)列{an}滿足a1=0,$\frac{1}{1-{a}_{n}}$-$\frac{1}{1-{a}_{n-1}}$=1(n≥2,n∈N*),則a2017=( 。
A.$\frac{1}{2017}$B.$\frac{1}{2016}$C.$\frac{2016}{2017}$D.$\frac{2015}{2016}$

分析 推導出{$\frac{1}{1-{a}_{n}}$}是首項為1,公差為1的等差數(shù)列,由此能求出a2017的值.

解答 解:∵數(shù)列{an}滿足a1=0,$\frac{1}{1-{a}_{n}}$-$\frac{1}{1-{a}_{n-1}}$=1(n≥2,n∈N*),
∴$\frac{1}{{1-a}_{1}}$=1,
∴{$\frac{1}{1-{a}_{n}}$}是首項為1,公差為1的等差數(shù)列,
∴$\frac{1}{1-{a}_{n}}$=1+(n-1)=n,
∴$\frac{1}{1-{a}_{2017}}=2017$,
解得a2017=$\frac{2016}{2017}$.
故選:C.

點評 本題考查數(shù)列的第2016項的求法,是基礎題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.$\frac{-2+5i}{6-3i}$=(  )
A.$\frac{9}{15}-\frac{8}{15}i$B.$\frac{9}{15}+\frac{8}{15}i$C.$-\frac{9}{15}-\frac{8}{15}i$D.$-\frac{9}{15}+\frac{8}{15}i$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{36}$=1上一點P(x,y)到雙曲線一個焦點的距離是9,則x2+y2的值是133.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.函數(shù)$y=\sqrt{-{x^2}-2x+3}$的增區(qū)間是( 。
A.[-3,-1]B.[-1,1]C.(-∞,-3]D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)f(x)=ax2+(b-2a)x-2b為偶函數(shù),且在(0,+∞)單調(diào)遞減,則f(x)>0的解集為{x|-2<x<2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知三角形ABC中,B(-1,0),C(1,0),且|AB|+|AC|=4.
(Ⅰ)求動點A的軌跡M的方程;
(Ⅱ)P為軌跡M上動點,△PBC的外接圓為⊙O1(O1為圓心),當P在M上運動時,求點O1到x軸的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知圓F1:(x+$\sqrt{3}$)2+y2=9與圓F2:(x-$\sqrt{3}$)2+y2=1,以圓F1、F2的圓心分別為左右焦點的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過兩圓的交點.
(1)求橢圓C的方程;
(2)直線x=2$\sqrt{3}$上有兩點M、N(M在第一象限)滿足$\overrightarrow{{F}_{1}M}$•$\overrightarrow{{F}_{2}N}$=0,直線MF1與NF2交于點Q,當|MN|最小時,求線段MQ的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.要得到函數(shù)f(x)=sin2x的圖象,只需將函數(shù)g(x)=cos2x的圖象( 。
A.向左平移$\frac{π}{2}$個周期B.向右平移$\frac{π}{2}$個周期
C.向左平移$\frac{π}{4}$個周期D.向右平移$\frac{π}{4}$個周期

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知變量x,y滿足$\left\{\begin{array}{l}{x-2y+4≥0}\\{x≤2}\\{x+y-2≥0}\end{array}\right.$則目標函數(shù)z=$\frac{x+y+3}{x+2}$的最大值為( 。
A.$\frac{5}{2}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.1

查看答案和解析>>

同步練習冊答案