分析 (1)以A為原點,建立如圖所示的空間直角坐標系,設PA=x,
則P(0,0,x),D(-1,0,0),E(0,$\frac{\sqrt{2}}{2}$,0),C(-1,$\sqrt{2}$,0),F(xiàn)(-$\frac{1}{2}$,$\frac{\sqrt{2}}{2}$,$\frac{x}{2}$),$\overrightarrow{EF}•\overrightarrow{PD}=\frac{1}{2}+0-\frac{{x}^{2}}{2}=0$,得x.
(2)求出平面PBC、平面PDC的法向量.利用向量的夾角公式求解.
解答 解:(1)以A為原點,建立如圖所示的空間直角坐標系,設PA=x,
則P(0,0,x),D(-1,0,0),E(0,$\frac{\sqrt{2}}{2}$,0),C(-1,$\sqrt{2}$,0),F(xiàn)(-$\frac{1}{2}$,$\frac{\sqrt{2}}{2}$,$\frac{x}{2}$),
又$\overrightarrow{EF}=(-\frac{1}{2},0,\frac{x}{2})$,$\overrightarrow{PD}=(-1,0,-x)$,
∵EF⊥PD,∴$\overrightarrow{EF}•\overrightarrow{PD}=\frac{1}{2}+0-\frac{{x}^{2}}{2}=0$,解得x=1.
∴當PA的長度為1時,EF⊥PD.
(2)由(1)可得$\overrightarrow{PB}=(0,\sqrt{2},-1),\overrightarrow{PC}=(-1,\sqrt{2},-1)$,$\overrightarrow{PD}=(-1,0,0)$,
設平面PBC的法向量為$\overrightarrow{m}=(x,y,z)$,$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PB}=\sqrt{2}y-z=0}\\{\overrightarrow{m}•\overrightarrow{PC}=-x+\sqrt{2}y-z=0}\end{array}\right.$,取$\overrightarrow{m}=(0,1,\sqrt{2})$.
同理可得平面PDC的法向量為$\overrightarrow{n}=(1,0,-1)$.
|cos<$\overrightarrow{m},\overrightarrow{n}$>|=$\frac{\sqrt{3}}{3}$,∴平面BPC與平面DPC的夾角余弦值$\frac{\sqrt{3}}{3}$.
點評 本題考查了向量在處理動點問題中的應用,及向量法求二面角,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,-2) | B. | (-1,2) | C. | (1,-2) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com