19.函數(shù)$f(x)={e^2}x+\frac{1}{x},g(x)=\frac{ex}{{{e^{x-1}}}}$,對任意x1,x2∈(0,+∞),不等式(k+1)g(x1)≤kf(x2)(k>0)恒成立,則實數(shù)k的取值范圍是( 。
A.[1,+∞)B.(2,+∞]C.(0,2)D.(0,1]

分析 利用基本不等式可求f(x)的最小值,對函數(shù)g(x)求導,利用導數(shù)研究函數(shù)的單調(diào)性,進而可求g(x)的最大值,f(x)的最小值,得到關于k的不等式,解出即可.

解答 解:∵當x>0時,f(x)=e2x+$\frac{1}{x}$≥2 $\sqrt{{e}^{2}x•\frac{1}{x}}$=2e,
∴x1∈(0,+∞)時,函數(shù)f(x2)有最小值2e,
∵g(x)=$\frac{ex}{{e}^{x-1}}$,∴g′(x)=$\frac{{e}^{2}(1-x)}{{e}^{x}}$,
當x<1時,g′(x)>0,則函數(shù)g(x)在(0,1)上單調(diào)遞增,
當x>1時,g′(x)<0,則函數(shù)在(1,+∞)上單調(diào)遞減,
∴x=1時,函數(shù)g(x)有最大值g(1)=e,
則有x1、x2∈(0,+∞),f(x2min=2e>g(x1max=e
∵(k+1)g(x1)≤kf(x2)(k>0),
∴$\frac{g{(x}_{1})}{k}$≤$\frac{f{(x}_{2})}{k+1}$恒成立且k>0,$\frac{e}{k}$≤$\frac{2e}{k+1}$,
∴k≥1
故選:A.

點評 本題主要考查了利用基本不等式求解函數(shù)的最值,導數(shù)在函數(shù)的單調(diào)性,最值求解中的應用是解答本題的另一重要方法,函數(shù)的恒成立問題的轉(zhuǎn)化,本題具有一定的難度.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中點,E是AB的中點,P是△ABC(包括邊界)內(nèi)任一點,則$\overrightarrow{AD}$•$\overrightarrow{EP}$的取值范圍是[-9,9].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如果|cos θ|=$\frac{1}{5}$,$\frac{7π}{2}$<θ<4π,那么cos$\frac{θ}{2}$的值等于( 。
A.$\frac{\sqrt{10}}{5}$B.-$\frac{\sqrt{10}}{5}$C.$\frac{\sqrt{15}}{5}$D.-$\frac{\sqrt{15}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)$f(x)=\frac{{3{x^2}+ax+26}}{x+1}$,若存在x∈N*使得f(x)≤2成立,則實數(shù)a的取值范圍為(-∞,-15].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的長軸長為6,離心率$e=\frac{{\sqrt{6}}}{3}$,O為坐標原點.
(Ⅰ)求橢圓E標準方程;
(Ⅱ)如圖,若分別過橢圓E的左右焦點F1,F(xiàn)2的動直線l1,l2相交于P點,與橢圓分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率k1、k2、k3、k4滿足k1+k2=k3+k4.是否存在定點M、N,使得|PM|+|PN|為定值.存在,求出M、N點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)$f(x)=2sin({ωx+φ})({0<ω<12,|φ|<\frac{π}{2}})$,若$f(0)=-\sqrt{3}$,且函數(shù)f(x)的圖象關于直線$x=-\frac{π}{12}$對稱,則以下結論正確的是( 。
A.函數(shù)f(x)的最小正周期為$\frac{π}{3}$
B.函數(shù)f(x)的圖象關于點$({\frac{7π}{9},0})$對稱
C.函數(shù)f(x)在區(qū)間$({\frac{π}{4},\frac{11π}{24}})$上是增函數(shù)
D.由y=2cos2x的圖象向右平移$\frac{5π}{12}$個單位長度可以得到函數(shù)f(x)的圖象

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設f(x)是定義在R上周期為2的奇函數(shù),當0≤x≤1時,f(x)=x2-x,則$f({-\frac{5}{2}})$=( 。
A.$-\frac{1}{4}$B.$-\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.(理) 如圖,在平面直角坐標系xoy中,點A(x1,y1),B(x2,y2)在單位圓上,∠xOA=α,$α∈(\frac{π}{6},\frac{π}{2})$,$∠AOB=\frac{π}{3}$.
(1)若$cos(α+\frac{π}{4})=-\frac{3}{5}$,求x1的值;
(2)過點A作x軸的垂線交單位圓于另一點C,過B作x軸的垂線,垂足為D,記△AOC的面積為S1,△BOD的面積為S2,設f(α)=S1+S2,求函數(shù)f(α)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.在△ABC中,若$sinAsin(\frac{π}{2}-B)=1-cos(\frac{π}{2}-B)cosA$,則△ABC為直角三角形(填“銳角”、“直角”或“鈍角”)

查看答案和解析>>

同步練習冊答案