【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù))在極坐標系(與直角坐標系xOy取相同的長度單位.且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=6sinθ.
(1)求圓C的直角坐標方程;
(2)設圓C與直線l交于點A,B.若點P的坐標為(1,2),求|PA|+|PB|的最小值.
【答案】
(1)解:由ρ=6sinθ得ρ2=6ρsinθ,
化為直角坐標方程為x2+y2=6y,即x2+(y﹣3)2=9.
(2)解:將l的參數(shù)方程代入圓C的直角坐標方程,得t2+2(cosα﹣sinα)t﹣7=0.
由△=(2cosα﹣2sinα)2+4×7>0,故可設t1,t2是上述方程的兩根,
所以 又直線l過點(1,2),
故結合t的幾何意義得|PA|+|PB|= = .
所以|PA|+|PB|的最小值為 .
【解析】(1)利用x=ρcosθ,y=ρsinθ可將圓C極坐標方程化為直角坐標方程;(2)先根據(jù)(1)得出圓C的普通方程,再根據(jù)直線與交與交于A,B兩點,可以把直線與曲線聯(lián)立方程,用根與系數(shù)關系結合直線參數(shù)方程的幾何意義,表示出|PA|+|PB|,最后根據(jù)三角函數(shù)的性質(zhì),即可得到求解最小值.
【考點精析】根據(jù)題目的已知條件,利用圓的標準方程的相關知識可以得到問題的答案,需要掌握圓的標準方程:;圓心為A(a,b),半徑為r的圓的方程.
科目:高中數(shù)學 來源: 題型:
【題目】2016年1月1日起全國統(tǒng)一實施全面的兩孩政策.為了解適齡民眾對放開生育二胎政策的態(tài)度,某市選取70后80后作為調(diào)查對象,隨機調(diào)查了100人并對調(diào)查結果進行統(tǒng)計,70后不打算生二胎的占全部調(diào)查人數(shù)的15%,80后打算生二胎的占全部被調(diào)查人數(shù)的45%,100人中共有75人打算生二胎.
(1)根據(jù)調(diào)查數(shù)據(jù),判斷是否有90%以上把握認為“生二胎與年齡有關”,并說明理由;
(2)以這100人的樣本數(shù)據(jù)估計該市的總體數(shù)據(jù),且以頻率估計概率,若從該市70后公民中(人數(shù)很多)隨機抽取3位,記其中打算生二胎的人數(shù)為X,求隨機變量X的分布列,數(shù)學期望E(X)和方差D(X). 參考公式:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
( ,其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=e1﹣x(﹣a+cosx),a∈R.
(Ⅰ)若函數(shù)y=f(x)在[0,π]存在單調(diào)增區(qū)間,求實數(shù)a的取值范圍;
(Ⅱ)若f( )=0,證明:對于x∈[﹣1, ],總有f(﹣x﹣1)+2f′(x)cos(﹣x﹣1)>0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2cosx(sinx﹣cosx)+m(m∈R),將y=f(x)的圖象向左平移 個單位后得到y(tǒng)=g(x)的圖象,且y=g(x)在區(qū)間 內(nèi)的最大值為 .
(1)求實數(shù)m的值;
(2)在△ABC中,內(nèi)角A、B、C的對邊分別是a、b、c,若 ,且a+c=2,求△ABC的周長l的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=1,E,F(xiàn)分別是CC1 , BC的中點,AE⊥A1B1 , D為棱A1B1上的點.
(1)證明:AB⊥AC;
(2)證明:DF⊥AE;
(3)是否存在一點D,使得平面DEF與平面ABC所成銳二面角的余弦值為 ?若存在,說明點D的位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】體育課的排球發(fā)球項目考試的規(guī)則是:每位學生最多可發(fā)球3次,一旦發(fā)球成功,則停止發(fā)球,否則一直發(fā)到3次為止.設學生一次發(fā)球成功的概率為p (p≠0),發(fā)球次數(shù)為X,若X的數(shù)學期望EX>1.75,則p的取值范圍是( )
A.(0, )
B.( ,1)
C.(0, )
D.( ,1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為 (α為參數(shù)).以點O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ﹣ )=2 (Ⅰ)將直線l化為直角坐標方程;
(Ⅱ)求曲線C上的一點Q 到直線l 的距離的最大值及此時點Q的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設方程(m+1)|ex﹣1|﹣1=0的兩根分別為x1 , x2(x1<x2),方程|ex﹣1|﹣m=0的兩根分別為x3 , x4(x3<x4).若m∈(0, ),則(x4+x1)﹣(x3+x2)的取值范圍為( )
A.(﹣∞,0)
B.(﹣∞,ln )
C.(ln ,0)
D.(﹣∞,﹣1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com