【題目】設(shè),,給出以下四種排序:①M,N,T;②M,T,N;③N,T,M;④T,N,M.從中任選一個,補(bǔ)充在下面的問題中,解答相應(yīng)的問題.

已知等比數(shù)列中的各項(xiàng)都為正數(shù),,且__________依次成等差數(shù)列.

(Ⅰ)求的通項(xiàng)公式;

(Ⅱ)設(shè)數(shù)列的前n項(xiàng)和為,求滿足的最小正整數(shù)n

注:若選擇多種排序分別解答,按第一個解答計(jì)分.

【答案】(Ⅰ)答案見解析;(Ⅱ)答案見解析.

【解析】

(Ⅰ)根據(jù)選的條件求出等比數(shù)列的公比,寫出其通項(xiàng)公式即可;

(Ⅱ)由(Ⅰ)得出數(shù)列的通項(xiàng)公式,然后利用等比數(shù)列前項(xiàng)和解不等式,再由確定其最小值.

解:(解答一)選②或③:

(Ⅰ)設(shè)的公比為q,則.由條件得,

又因?yàn)?/span>,所以,即,

解得(負(fù)值舍去).所以

(Ⅱ)由題意得,則.由

,即,又因?yàn)?/span>,所以n的最小值為7.

(解答二)選①或④:

(Ⅰ)設(shè)的公比為q,則.由條件得,

又因?yàn)?/span>,所以,即,

解得(負(fù)值舍去).所以

(Ⅱ)由題意得,則.由

,即,又因?yàn)?/span>,所以n的最小值為5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防流感,某學(xué)校對教室用藥熏消毒法進(jìn)行消毒,已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量與時(shí)間成正比,藥物釋放完畢后,的函數(shù)關(guān)系式為為常數(shù)).如圖所示,根據(jù)圖中提供的信息,回答下列問題:


1)從藥物釋放開始,每立方米空氣中的含藥量與時(shí)間之間的函數(shù)關(guān)系式為________;

2)據(jù)測定,當(dāng)空氣中每立方米的含藥量降低到以下時(shí),學(xué)生方可進(jìn)教室,那么從藥物釋放開始,至少需要經(jīng)過多少時(shí)間學(xué)生才能回到教室?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線和圓,傾斜角為45°的直線過拋物線的焦點(diǎn),且與圓相切.

1)求的值;

2)動點(diǎn)在拋物線的準(zhǔn)線上,動點(diǎn)上,若點(diǎn)處的切線軸于點(diǎn),設(shè).求證點(diǎn)在定直線上,并求該定直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著社會的發(fā)展與進(jìn)步,傳播和存儲狀態(tài)已全面進(jìn)入數(shù)字時(shí)代,以數(shù)字格式存儲,以互聯(lián)網(wǎng)為平臺進(jìn)行傳輸?shù)囊魳贰獢?shù)字音樂已然融入了我們的日常生活.雖然我國音樂相關(guān)市場仍處在起步階段,但政策利好使音樂產(chǎn)業(yè)逐漸得到資本市場更多的關(guān)注.對比如下兩幅統(tǒng)計(jì)圖,下列說法正確的是( )

2011-2018年中國音樂產(chǎn)業(yè)投融資事件數(shù)量統(tǒng)計(jì)圖

2013-2021年中國錄制音樂營收變化及趨勢預(yù)測統(tǒng)計(jì)圖

A.2011~2018年我國音樂產(chǎn)業(yè)投融資事件數(shù)量逐年增長

B.2013~2018年我國錄制音樂營收與音樂產(chǎn)業(yè)投融資事件數(shù)量呈正相關(guān)關(guān)系

C.2016年我國音樂產(chǎn)業(yè)投融資事件的平均營收約為億美元

D.2013~2019年我國錄制音樂營收年增長率最大的是2018

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若直線與函數(shù)的圖象相切,求實(shí)數(shù)的值;

(2)若存在,,使,且,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,為矩形的邊上一點(diǎn),且,將沿折起到,使得.



1)證明:平面平面;

2)若,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù).

1)若,當(dāng)時(shí),函數(shù)內(nèi)有唯一的極大值,求的取值范圍;

2)若,,試研究的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù)同時(shí)滿足下列兩個條件:①對任意的恒有成立;②當(dāng)時(shí),.記函數(shù),若函數(shù)恰有兩個零點(diǎn),則實(shí)數(shù)的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為abc.已知a2+c2b2ac.

1)求cosBtan2B的值;

2)若b3A,求c的值.

查看答案和解析>>

同步練習(xí)冊答案