A. | 0或2$\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 0或-2$\sqrt{3}$ | D. | -2$\sqrt{3}$ |
分析 由已知點的坐標求出向量$\overrightarrow{AB}、\overrightarrow{AC}$的坐標,再由數(shù)量積求夾角公式列式即可求得m值.
解答 解:∵A(0,-1),B(m,1),C($\sqrt{3}$,0),
∴$\overrightarrow{AB}=(m,2),\overrightarrow{AC}=(\sqrt{3},1)$,
∴$\overrightarrow{AB}•\overrightarrow{AC}=\sqrt{3}m+2$,$|\overrightarrow{AB}|=\sqrt{{m}^{2}+4},|\overrightarrow{AC}|=2$,
∴cos120$°=-\frac{1}{2}$=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|}=\frac{\sqrt{3}m+2}{2\sqrt{{m}^{2}+4}}$,解得m=0(舍)或$m=-2\sqrt{3}$.
故選:D.
點評 本題考查平面向量的數(shù)量積運算,考查了數(shù)量積求斜率的夾角,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{41}{42}$ | B. | $\frac{1}{42}$ | C. | $\frac{40}{41}$ | D. | $\frac{42}{41}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若a∥α,b∥α,則 a∥b | B. | 若a∥α,a∥β,則 α∥β | ||
C. | 若a⊥α,b⊥α,則 a∥b | D. | 若α⊥β,α⊥γ,則 β∥γ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com