13.一個(gè)空間幾何體的三視圖如圖所示,其中正視圖為等腰直角三角形,側(cè)視圖與俯視圖為正方形,則該幾何體的體積為(  )
A.64B.32C.$\frac{64}{3}$D.$\frac{32}{3}$

分析 由已知中的三視圖,可知該幾何體是一個(gè)等腰直角三角形為底面的直三棱柱,可以采用“補(bǔ)形還原法”,該幾何體是正方體切割去一半而得到.

解答 解:由三視圖知:幾何體是一個(gè)等腰直角三角形為底面的直三棱柱.
∴體積V=S×h
=$\frac{1}{2}×4×4×4$
=32 
故選B

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是由三視圖求體積,解決本題的關(guān)鍵是知道該幾何體的形狀,然后根據(jù)“主左一樣高,主俯一樣長(zhǎng),俯左一樣寬”進(jìn)行計(jì)算.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若lgx有意義,則函數(shù)y=x2+3x-5的值域是(  )
A.[-$\frac{29}{4}$,+∞)B.(-$\frac{29}{4}$,+∞)C.[-5,+∞)D.(-5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=sin2ωx-2sin2ωx+1(ω>0)的最小正周期為π.
(1)求ω的值;
(2)求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在一次抽樣調(diào)查中測(cè)得樣本的5個(gè)樣本點(diǎn),數(shù)值如表:
x9.513.517.521.525.5
y642.82.42.2
(1)畫散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷,y=bx+a與y=$\frac{x}$+a那一個(gè)適宜作為y關(guān)于x的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)
(2)根據(jù)(1)中判斷結(jié)果及表中數(shù)據(jù),求出y關(guān)于x的回歸方程;
(3)根據(jù)(2)中所求回歸方程,估計(jì)x=40時(shí)的y值(精確到小數(shù)后1位).
參考數(shù)據(jù):①
$\overline{x}$$\overline{W}$$\overline{y}$$\sum_{I=1}^{5}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{I=1}^{5}$(xi-$\overline{x}$)2$\sum_{I=1}^{5}$(Wi-$\overline{W}$)(yi-$\overline{y}$)$\sum_{I=1}^{5}$((Wi-$\overline{W}$)2
17.50.063.5-36.81600.1650.003
表中Wi=$\frac{1}{{x}_{i}}$,$\overline{W}$=$\frac{1}{5}$$\sum_{i=1}^{5}$Wi
②由最小二乘法,回歸方程y=bx+a中的b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x+y-1≥0}\\{x-y-1≤0}\\{x-3y+3≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.把5件不同產(chǎn)品擺成一排,若產(chǎn)品A與產(chǎn)品B相鄰,且產(chǎn)品A與產(chǎn)品C不相鄰,則不同的擺法有(  )種.
A.12B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖,平面中兩條直線l1和l2相交于點(diǎn)O,對(duì)于平面上任意一點(diǎn)M,若p,q分別是M到直線l1和l2的距離,則稱有序非負(fù)實(shí)數(shù)對(duì)(p,q)是點(diǎn)M的“距離坐標(biāo)”.給出下列四個(gè)命題:
①若p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且僅有1個(gè).
②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有2個(gè).
③若pq≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有4個(gè).
④若p=q,則點(diǎn)M的軌跡是一條過(guò)O點(diǎn)的直線.
其中所有正確命題的序號(hào)為( 。
A.①②④B.①②③C.②③D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.?dāng)?shù)列{an}是等差數(shù)列,a3和a2014是方程5x2-6x+1=0的兩根,則數(shù)列{an}的前2016項(xiàng)的和為$\frac{6048}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)$y=2sin(ωx+\frac{π}{6})\;(ω>0)$的圖象的兩條相鄰對(duì)稱軸的距離是$\frac{π}{2}$,則ω=( 。
A.4B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案