5.如圖,平面中兩條直線l1和l2相交于點O,對于平面上任意一點M,若p,q分別是M到直線l1和l2的距離,則稱有序非負實數(shù)對(p,q)是點M的“距離坐標(biāo)”.給出下列四個命題:
①若p=q=0,則“距離坐標(biāo)”為(0,0)的點有且僅有1個.
②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點有且僅有2個.
③若pq≠0,則“距離坐標(biāo)”為(p,q)的點有且僅有4個.
④若p=q,則點M的軌跡是一條過O點的直線.
其中所有正確命題的序號為(  )
A.①②④B.①②③C.②③D.①③④

分析 根據(jù)點M的“距離坐標(biāo)”的定義即可判斷出正誤.

解答 解:①若p=q=0,則“距離坐標(biāo)”為(0,0)的點是兩條直線的交點O,因此有且僅有1個,正確.
②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(0,q)(q≠0)或(p,0)(p≠0),因此滿足條件的點有且僅有2個,
正確.
③若pq≠0,則“距離坐標(biāo)”為(p,q)的點有且僅有4個,如圖所示,正確.
④若p=q,則點M的軌跡是兩條過O點的直線,分別為交角的平分線所在直線,因此不正確.
綜上可得:只有①②③正確.
故選:B.

點評 本題考查了新定義“距離坐標(biāo)”,考查了理解能力與推理能力、數(shù)形結(jié)合的思想方法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.望謨民族中學(xué)在迎接“申示二評”期間成功展示了大型竹鼓操,得到各位專家的好評.已知高一(1)班同學(xué)按身高由低到高站隊,且前10位同學(xué)身高呈等比數(shù)列,若第四位同學(xué)身高為1.5米,第十位同學(xué)身高為1.62米,則第七位同學(xué)身高為( 。
A.$\sqrt{2.48}$米B.$\sqrt{2.36}$米C.$\sqrt{2.43}$米D.$\sqrt{2.52}$米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x3-ax-1(a∈R).
(1)若f(x) 的單調(diào)減區(qū)間為(-1.1),求a的值;
(2)若f(x) 在(-1,1)上是減函數(shù),求實數(shù)a的范圍;
(3)討論f(x) 的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一個空間幾何體的三視圖如圖所示,其中正視圖為等腰直角三角形,側(cè)視圖與俯視圖為正方形,則該幾何體的體積為( 。
A.64B.32C.$\frac{64}{3}$D.$\frac{32}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=$\frac{a•{2}^{x}-2}{{2}^{x}+1}$(a∈R),給出下列命題:
①f(x)是R上的單調(diào)函數(shù);②?a∈R,使f(x)是奇函數(shù);  ③?a∈R,使f(x)是偶函數(shù);
④a=1時,$\sum_{k=-2016}^{2016}{f(k)}$=f(-2016)+f(-2015)+…+f(2016)為定值-1008.
以上命題中,真命題的是②(請?zhí)畛鏊姓婷}序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x2+ax-lnx,g(x)=ex
(1)當(dāng)a=1時,求f(x)在x=1處的切線方程;
(2)函數(shù)h(x)=f′(x)-f(x),證明:當(dāng)x∈(0,1]時,h′(x)≥2-a;
(3)若函數(shù)$F(x)=\frac{f(x)}{g(x)}$在(0,1]上是單調(diào)遞減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.將函數(shù)$y=\sqrt{3}sin2x-2{cos^2}x$圖象上各點的橫坐標(biāo)伸長到原來的3倍,再向右平移$\frac{π}{8}$個單位長度,則所得函數(shù)的最小正周期T是3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知△ABC的兩個頂點為A(0,0)、B(6,0),頂點C在曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1上運動,則△ABC的重心的軌跡方程是$\frac{9(x-2)^{2}}{16}-{y}^{2}=1$(y≠0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.寫出解方程x2-2x-3=0的一個算法.

查看答案和解析>>

同步練習(xí)冊答案