1.已知集合$A=(-∞,\frac{1}{2}]$,函數(shù)y=ln(2x+1)的定義域?yàn)榧螧,則A∩B=( 。
A.$({-\frac{1}{2},\frac{1}{2}}]$B.$({-\frac{1}{2},\frac{1}{2}})$C.$({-∞,-\frac{1}{2}})$D.$[{\frac{1}{2},+∞})$

分析 由對(duì)數(shù)的真數(shù)大于零求出集合B,由交集的運(yùn)算求出A∩B.

解答 解:由2x+1>0得x$>-\frac{1}{2}$,則集合B=($-\frac{1}{2},+∞$),
又集合$A=(-∞,\frac{1}{2}]$,則A∩B=($-\frac{1}{2},\frac{1}{2}$],
故選:A.

點(diǎn)評(píng) 本題考查對(duì)數(shù)函數(shù)的定義域,以及交集的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.將長(zhǎng)為72cm的鐵絲截成12段,搭成一個(gè)正四棱柱的模型,以此為骨架做成一個(gè)容積最大的容器,則此四棱柱的高應(yīng)該是6cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)函數(shù)f(x)=ax+ka-x(a>0,且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求實(shí)數(shù)k的值;
(2)若f(1)=$\frac{3}{2}$.求證:f(x)是單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn),如果函數(shù)f(x)的圖象恰好通過(guò)n(n∈N*)個(gè)整點(diǎn),則稱函數(shù)f(x)為n階整點(diǎn)函數(shù).有下列函數(shù):
①f(x)=sin2x;  
②g(x)=x3;
③h(x)=($\frac{1}{3}$)x;
④φ(x)=lnx.
其中是一階整點(diǎn)函數(shù)有( 。 個(gè).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.命題P:“對(duì)于任意的x∈R,cosx≥1”,則命題P的否定是( 。
A.存在x0∈R,cosx0≥1B.對(duì)于任意的x∈R,cosx<1
C.存在x0∈R,cosx0<1D.對(duì)于任意的x∈R,cosx>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.各項(xiàng)都為正數(shù)的等比數(shù)列{an}中,a1a9=10,則a5的值為( 。
A.5B.±$\sqrt{10}$C.$\sqrt{10}$D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.5名運(yùn)動(dòng)員同時(shí)參加3項(xiàng)冠軍爭(zhēng)奪賽(每項(xiàng)比賽無(wú)并列冠軍),獲得冠軍的可能種數(shù)為( 。
A.35B.53C.$A_5^3$D.$C_5^3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.2015年10月18日青運(yùn)會(huì)開(kāi)幕,為了更好的迎接青運(yùn)會(huì),做好夏季降溫的同時(shí)要減少能源損耗.福州市海峽奧體中心的體育館外墻需要建造隔熱層.體育館要建造可使用30年的隔熱層,每厘米厚的隔熱層建造成本為2萬(wàn)元.該建筑物每年的能源消耗費(fèi)用C萬(wàn)元與隔熱層厚度xcm滿足關(guān)系:C(x)=$\frac{k}{x+5}$(0≤x≤10,k為常數(shù)),若不建隔熱層,每年能源消耗費(fèi)用為3萬(wàn)元.設(shè)f(x)為隔熱層建造費(fèi)用與30年的能源消耗費(fèi)用之和.
(1)求k的值及f(x)的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小?并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)$y=sin({\frac{1}{2}x+\frac{π}{3}}),x∈[{0,π}]$
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案