已知f(x)=asinωx+bcosωx(ω>0,x∈R)的相鄰兩個(gè)對(duì)稱軸之間的距離為
π
2
,且滿足f(x)≥f(
3
)=-1.
(1)求f(x)的解析式;
(2)試列表并用“五點(diǎn)法”畫(huà)出函數(shù)y=f(x)在區(qū)間[-
π
12
,
11π
12
]上的圖象.
(3)若函數(shù)g(x)=f(
π
2
-x),求函數(shù)y=g(x)的單調(diào)遞減區(qū)間.
考點(diǎn):五點(diǎn)法作函數(shù)y=Asin(ωx+φ)的圖象,三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)根據(jù)函數(shù)的性質(zhì)求出a,b即可求f(x)的解析式;
(2)利用“五點(diǎn)法”即可畫(huà)出函數(shù)y=f(x)在區(qū)間[-
π
12
,
11π
12
]上的圖象.
(3)求出函數(shù)g(x)=f(
π
2
-x)的表達(dá)式,根據(jù)三角函數(shù)的單調(diào)性即可求函數(shù)y=g(x)的單調(diào)遞減區(qū)間.
解答: 解:(1)f(x)=asinωx+bcosωx=
a2+b2
sin(ωx+φ),其中tanφ=
b
a

則函數(shù)的周期T=
ω
,
∵函數(shù)f(x)相鄰兩個(gè)對(duì)稱軸之間的距離為
π
2
,
∴函數(shù)的周期T=2×
π
2
=
ω
,
解得ω=2,
即f(x)=asin2x+bcos2x,
∵f(x)≥f(
3
)=-1,
∴函數(shù)的最小值為-1,即
asin(2×
3
)+bcos(2×
3
)=-1,
3
2
a+
b
2
=1

且-
a2+b2
=-1,即a2+b2=1 ②,
解得a=
3
2
b=
1
2

f(x)=
3
2
sin2x+
1
2
cos2x=sin(2x+
π
6
);
(2)列表并用“五點(diǎn)法”畫(huà)出函數(shù)y=f(x)在區(qū)間[-
π
12
11π
12
]上的圖象.

2x+
π
6
0
π
2
π
2
x-
π
12
π
6
12
3
11π
12
y=sin(2x+
π
6
010-10
畫(huà)圖

(3)函數(shù)g(x)=f(
π
2
-x)=sin[2(
π
2
-x)+
π
6
]=sin(
6
-2x)=-sin(
π
6
-2x)=sin(2x-
π
6
);
由2kπ+
π
2
≤2x-
π
6
≤2kπ+
2
,k∈Z,
解得kπ+
π
3
≤x≤kπ+
12
,k∈Z
即函數(shù)y=g(x)的單調(diào)遞減區(qū)間是[kπ+
π
3
,kπ+
12
],k∈Z.
點(diǎn)評(píng):本題主要考查三角函數(shù)的圖象和性質(zhì),利用條件求出函數(shù)的解析式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2015年元旦聯(lián)歡晚會(huì)某師生一塊做游戲,數(shù)學(xué)老師制作了六張卡片放在盒子里,卡片上分別寫(xiě)著六個(gè)函數(shù):分別寫(xiě)著六個(gè)函數(shù):f1(x)=x2+1,f2(x)=x3,f3(x)=
ln|x|
x
,f4(x)=xcosx,f5(x)=|sinx|,f6(x)=3-x.
(1)現(xiàn)在取兩張卡片,記事件A為“所得兩個(gè)函數(shù)的奇偶性相同”,求事件A的概率;
(2)從盒中不放回逐一抽取卡片,若取到一張卡片上的函數(shù)是奇函數(shù)則停止抽取,否則繼續(xù)進(jìn)行,記停止時(shí)抽取次數(shù)為ξ,寫(xiě)出ξ的分布列,并求其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程(x-y-3)(x+y)=0所表示的圖形是(  )
A、兩條互相平行的直線
B、兩條互相垂直的直線
C、一個(gè)點(diǎn)(
3
2
,-
3
2
D、過(guò)點(diǎn)(
3
2
,-
3
2
)的無(wú)數(shù)條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
0≤x≤1
0≤y≤1
y≥kx-1
,若z=kx-y的最大值為1,則實(shí)數(shù)k的取值范圍是(  )
A、k=1B、k≤1
C、k≥1D、0≤k≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)圓和直線l:x+2y-3=0相切于點(diǎn)P(1,1),且半徑為5,求這個(gè)圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)人打靶時(shí)連續(xù)射擊兩次,事件“至少有一次中靶”的互斥事件是( 。
A、至多有一次中靶
B、兩次都中靶
C、只有一次中靶
D、兩次都不中靶

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x+x-1=3,那么與x2-x-2的值為( 。
A、3
5
B、-
5
C、±3
5
D、±
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某品牌空調(diào)在元旦期間舉行促銷活動(dòng),所示的莖葉圖表示某專賣店記錄的每天銷售量情況(單位:臺(tái)),則銷售量的中位數(shù)是( 。
A、13B、14C、15D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的公比為正數(shù),且a1•a7=2a32,若a2=2,則a1=( 。
A、1
B、4
C、
2
D、2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案