已知Sn為等差數(shù)列{an}的前n項和,若S1=1,,則的值為( )
A.
B.
C.
D.4
【答案】分析:根據(jù)首項等于S1,得到首項的值,利用等差數(shù)列的前n項和公式化簡,即可求出公差d的值,然后再利用等差數(shù)列的前n項和公式化簡所求的式子,把求出的首項和公差代入即可求出值.
解答:解:由S1=a1=1,
得到=4,解得d=2,
===
故選A
點評:此題考查學生靈活運用等差數(shù)列的前n項和公式化簡求值,掌握等差數(shù)列的性質(zhì),是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知Sn為等差數(shù)列{an}的前n和,若a4=-48,a9=-33,
(1)求an的通項公式;
(2)當n為何值時,Sn最?.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn為等差數(shù)列{an}的前n項和,a4=9,a9=-6,Sn=63,求n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn為等差數(shù)列{an}的前n項和,a1=-2012,
S2011
2011
-
S2009
2009
=2
,則S2012=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•昌平區(qū)二模)已知Sn為等差數(shù)列{an}的前n項和,且a3=S3=9
(Ⅰ)求{an}的通項公式;
(Ⅱ)若等比數(shù)列{bn}滿足b1=a2,b4=S4,求{bn}的前n項和公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn為等差數(shù)列{an}的前n項和,若a1=-2012,
S2010
2010
-
S2004
2004
=6
,則S2013等于( 。

查看答案和解析>>

同步練習冊答案