正項等比數(shù)列{an}中,Sn是其前n項和,若a1=1,a2a6=8,則S8=
 
考點:等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由題意易得數(shù)列的公比q=
2
,代入求和公式計算可得.
解答: 解:設(shè)正項等比數(shù)列{an}公比為q,則q>0,
由題意可得a2a6=a12q6=q6=8,解得q=
2

∴S8=
a1(1-q8)
1-q
=
1-16
1-
2
=15
2
+15
故答案為:15
2
+15
點評:本題考查等比數(shù)列的求和公式和通項公式,求出數(shù)列的公比是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)定義在R上,對任意實數(shù)x,y,f(x+y)=f(x)•f(y)恒成立,且當(dāng)x>0時,有0<f(x)<1.
(1)判斷函數(shù)f(x)的單調(diào)性;
(2)求不等式f(x-1)f(
1
x
)>1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=2sin(
k
6
x+
2
)(k>0)的最小正周期不大于3,則當(dāng)k取最小正整數(shù)時y的圖象( 。
A、關(guān)于原點對稱
B、關(guān)于x軸對稱
C、關(guān)于y軸對稱
D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
(1)
1
sin10°
-
3
cos10°
;
(2)sin40°(tan10°-
3
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an=
2
S
2
n
2Sn-1
(n≥2).
(1)求證:數(shù)列{
1
Sn
}為等差數(shù)列;
(2)求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2cos2x+sinx-1的最大值為
 
,最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上連續(xù)的偶函數(shù),f(x)的圖象向右平移一個單位長度又得到一個奇函數(shù),且f(2)=-1,則f(8)+f(9)+f(10)+…+f(2012)+f(2013)+f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos(
π
2
-
π
4
x-
π
4
).
(1)求函數(shù)f(x)圖象的對稱軸;
(2)將函數(shù)f(x)的圖象上所有的點向左平移1個單位長度,得到函數(shù)g(x)的圖象,若函數(shù)y=g(x)+k在(-2,4)上有兩個零點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
,過橢圓C的右焦點F且斜率為1的直線l交橢圓于A,B兩點,N為弦AB的中點,O為坐標(biāo)原點.
(1)求直線ON的斜率kON;
(2)對于橢圓上的任意一點M,試證:總存在θ,使得等式
OM
=cosθ•
OA
+sinθ•
OB
成立.

查看答案和解析>>

同步練習(xí)冊答案