【題目】已知橢圓:的右焦點(diǎn)為,離心率為,是橢圓上位于第一象限內(nèi)的任意一點(diǎn),為坐標(biāo)原點(diǎn),關(guān)于的對(duì)稱點(diǎn)為,,圓:.
(1)求橢圓和圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)作與圓相切于點(diǎn),使得點(diǎn),點(diǎn)在的兩側(cè).求四邊形面積的最大值.
【答案】(1)橢圓的標(biāo)準(zhǔn)方程為,圓的標(biāo)準(zhǔn)方程;(2)
【解析】
(1)設(shè)橢圓左焦點(diǎn)為,連接,,易知四邊形為平行四邊形,則,結(jié)合離心率為,可求得,即可求得橢圓和圓的標(biāo)準(zhǔn)方程;
(2)設(shè),代入橢圓方程可得到的關(guān)系式,然后分別求得的面積的表達(dá)式,即可得到四邊形面積的表達(dá)式,結(jié)合的關(guān)系式,求面積的最大值即可.
(1)設(shè)橢圓左焦點(diǎn)為,連接,,
因?yàn)?/span>,,所以四邊形為平行四邊形,
所以,所以,
又離心率為,所以,.
故所求橢圓的標(biāo)準(zhǔn)方程為,圓的標(biāo)準(zhǔn)方程.
(2)設(shè),則,故.
所以,所以,
所以.
又,,所以.
故.
由,得,即,
所以,
當(dāng)且僅當(dāng),即,時(shí)等號(hào)成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動(dòng)圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線 C
(Ⅰ)求C的方程;
(Ⅱ)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點(diǎn),當(dāng)圓P的半徑最長時(shí),求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;并估計(jì),以運(yùn)動(dòng)為主的休閑方式的人的比例;
(2)能否在犯錯(cuò)誤的概率不超過0.025的前提下,認(rèn)為性別與休閑方式有關(guān)系?
附表:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的方程在上恰有3個(gè)解,存在,使不等式成立.
(1)若為真命題,求正數(shù)的取值范圍;
(2)若為真命題,且為假命題,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了檢查生產(chǎn)產(chǎn)品的甲、乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測(cè)出它們的這一項(xiàng)質(zhì)量指標(biāo)值.若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.下表是甲流水線樣本的頻數(shù)分布表,下圖是乙流水線樣本的頻率分布直方圖.
甲流水線樣本的頻數(shù)分布表
質(zhì)量指標(biāo)值 | 頻數(shù) |
9 | |
10 | |
17 | |
8 | |
6 |
乙流水線樣本的頻率分布直方圖
(1)根據(jù)圖形,估計(jì)乙流水線生產(chǎn)的產(chǎn)品的該項(xiàng)質(zhì)量指標(biāo)值的中位數(shù);
(2)設(shè)該企業(yè)生產(chǎn)一件合格品獲利100元,生產(chǎn)一件不合格品虧損50元,若某個(gè)月內(nèi)甲、乙兩條流水線均生產(chǎn)了1000件產(chǎn)品,若將頻率視為概率,則該企業(yè)本月的利潤約為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)恰有一個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)當(dāng),且時(shí),證明:.(常數(shù)是自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面平面,為等邊三角形,,,,點(diǎn)是的中點(diǎn).
(1)求證:平面PAD;
(2)求二面角P﹣BC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠家擬在2020年舉行促銷活動(dòng),經(jīng)調(diào)查測(cè)算,某產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費(fèi)用萬元,滿足(為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷售量只能是1萬件,已知2020年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件,該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將2020年該產(chǎn)品的利潤(萬元)表示為年促銷費(fèi)用(萬元)的函數(shù);
(2)該廠家2020年的促銷費(fèi)用投入多少萬元時(shí),廠家的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人玩猜數(shù)字游戲,先由甲心中任想一個(gè)數(shù)字,記為,再由乙猜甲剛才想的數(shù)字把乙猜的數(shù)字記為,且,若,則稱甲乙“心有靈犀”,現(xiàn)任意找兩個(gè)人玩這個(gè)游戲,得出他們“心有靈犀”的概率為________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com