【題目】在四棱錐中,平面平面,為等邊三角形,,,,點是的中點.
(1)求證:平面PAD;
(2)求二面角P﹣BC﹣D的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)要證明線面平行,關(guān)鍵是證明線線平行,所以取中點,連結(jié),,根據(jù)條件證明;
(2)取中點,連結(jié),可證明平面,取中點,連結(jié),則,以為原點,如圖建立空間直角坐標系,求平面的法向量,用兩個平面的法向量求二面角的余弦值.
證明:(1)取中點,連結(jié),.
因為為中點,所以,.
因為,.所以且.
所以四邊形為平行四邊形,所以.
因為平面,平面,
所以平面.
(2)取中點,連結(jié).
因為,所以.
因為平面平面,
平面平面,平面,
所以平面.取中點,連結(jié),則.
以為原點,如圖建立空間直角坐標系,
設(shè),則,,,,,
,.
平面的法向量,
設(shè)平面的法向量,
由,得.
令,則,.
由圖可知,二面角是銳二面角,
所以二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線(其中)的焦點的直線交拋物線于兩點,且兩點的縱坐標之積為.
(1)求拋物線的方程;
(2)當時,求的值;
(3)對于軸上給定的點(其中),若過點和兩點的直線交拋物線的準線點,求證:直線與軸交于一定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司的營銷部門對某件商品在網(wǎng)上銷售情況進行調(diào)查,發(fā)現(xiàn)當這件商品每回饋消費者一定的點數(shù),該商品每天的銷量就會發(fā)生一定的變化,經(jīng)過統(tǒng)計得到以下表:
(1)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合該商品銷量(百件)與返還點數(shù)之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測若返回6個點時該商品每天銷量;
(2)該公司為了在購物節(jié)期間對所有商品價格進行新一輪調(diào)整,隨機抽查了上一年購物節(jié)期間60名網(wǎng)友的網(wǎng)購金額情況,得到如下數(shù)據(jù)統(tǒng)計表:
網(wǎng)購金額 (單位:千元) | 合計 | ||||||
頻數(shù) | 3 | 9 | 9 | 15 | 18 | 6 | 60 |
若網(wǎng)購金額超過2千元的顧客定義為“網(wǎng)購達人”,網(wǎng)購金額不超過2千元的顧客定義為“非網(wǎng)購達人”.該營銷部門為了進步了解這60名網(wǎng)友的購物體驗,從“非網(wǎng)購達人”、“網(wǎng)購達人”中用分層抽樣的方法確定10人,若需從這10人中隨機選取3人進行問卷調(diào)查.設(shè)為選取的3人中“網(wǎng)購達人”的人數(shù),求的分布列和數(shù)學(xué)期望.
參考公式及數(shù)據(jù):①,;②.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右焦點為,離心率為,是橢圓上位于第一象限內(nèi)的任意一點,為坐標原點,關(guān)于的對稱點為,,圓:.
(1)求橢圓和圓的標準方程;
(2)過點作與圓相切于點,使得點,點在的兩側(cè).求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的左、右焦點分別是,,點為的上頂點,點在上,,且.
(1)求的方程;
(2)已知過原點的直線與橢圓交于,兩點,垂直于的直線過且與橢圓交于,兩點,若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,從參加環(huán)保知識競賽的學(xué)生中抽出名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:
(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計這次環(huán)保知識競賽成績的平均數(shù)、眾數(shù)、中位數(shù)。(不要求寫過程)
(3) 從成績是80分以上(包括80分)的學(xué)生中選兩人,求他們在同一分數(shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在實數(shù)使得則稱是區(qū)間的一內(nèi)點.
(1)求證:的充要條件是存在使得是區(qū)間的一內(nèi)點;
(2)若實數(shù)滿足:求證:存在,使得是區(qū)間的一內(nèi)點;
(3)給定實數(shù),若對于任意區(qū)間,是區(qū)間的一內(nèi)點,是區(qū)間的一內(nèi)點,且不等式和不等式對于任意都恒成立,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域為,其中.
(1)當時,寫出函數(shù)的單調(diào)區(qū)間(不要求證明);
(2)若對于任意的,均有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點的橢圓和拋物線有相同的焦點,橢圓過點,拋物線的頂點為原點.
求橢圓和拋物線的方程;
設(shè)點P為拋物線準線上的任意一點,過點P作拋物線的兩條切線PA,PB,其中A,B為切點.
設(shè)直線PA,PB的斜率分別為,,求證:為定值;
若直線AB交橢圓于C,D兩點,,分別是,的面積,試問:是否有最小值?若有,求出最小值;若沒有,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com