【題目】已知函數(shù).
(1)當(dāng),求的單調(diào)區(qū)間;
(2)若有兩個(gè)零點(diǎn),求的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)將a=1代入函數(shù),再求導(dǎo)即可得單調(diào)區(qū)間;(2)法一:先對(duì)函數(shù)求導(dǎo):當(dāng)時(shí),在上是減函數(shù),在上是增函數(shù),且x=1為的極值點(diǎn),當(dāng) 所以,,當(dāng),所以此時(shí)有兩個(gè)零點(diǎn);當(dāng)時(shí),函數(shù)只有一個(gè)零點(diǎn);當(dāng)時(shí),再分成三種情況, ,三種情況進(jìn)行討論,最后取并集即得a的范圍。法二:分離參變量,每一個(gè)a對(duì)應(yīng)兩個(gè)x,根據(jù)新構(gòu)造的函數(shù)單調(diào)性和值域,找到相應(yīng)滿足條件的a的范圍即可。
(1) 當(dāng)
令,可得,
當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞減,
當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞增。
所以函數(shù)減區(qū)間在區(qū)間,增區(qū)間
(2) 法一:函數(shù)定義域?yàn)?/span>,,
則
⑴當(dāng)時(shí),令可得,
當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞減,
當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞增。
且,當(dāng);當(dāng) 所以
所以有兩個(gè)零點(diǎn).,符合
⑵當(dāng),只有一個(gè)零點(diǎn)2,所以舍
⑶設(shè),由得或,
①若,則,所以在單調(diào)遞增,所以零點(diǎn)至多一個(gè).(舍)
②若,則,故時(shí),,當(dāng)時(shí),,所以在,單調(diào)遞增,在單調(diào)遞減。又,要想函數(shù)有兩個(gè)零點(diǎn),必須有,其中.
又因?yàn)楫?dāng)時(shí),,所以
故只有一個(gè)零點(diǎn),舍
③若,則,故時(shí),,;當(dāng)時(shí),,所以在,單調(diào)遞增,在單調(diào)遞減。又極大值點(diǎn),所以只有一個(gè)零點(diǎn)在(舍)
綜上,的取值范圍為。
法二:
,所以不是零點(diǎn).
由,變形可得.
令,則,
即.
當(dāng),;當(dāng),.
所以在遞增;在遞減.
當(dāng)時(shí),,當(dāng)時(shí),.所以當(dāng)時(shí),值域?yàn)?/span>.
當(dāng)時(shí),,當(dāng)時(shí),.所以當(dāng)時(shí),值域?yàn)?/span>.
因?yàn)?/span>有兩個(gè)零點(diǎn),故的取值范圍是
故的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,側(cè)棱底面,為棱上一點(diǎn),
(1)當(dāng)為棱中點(diǎn)時(shí),求直線與平面所成角的正弦值;
(2)是否存在點(diǎn),使二面角的余弦值為?若存在,求的值.若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且拋物線的焦點(diǎn)恰好是橢圓的一個(gè)焦點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)作直線與橢圓交于,兩點(diǎn),點(diǎn)滿足(為坐標(biāo)原點(diǎn)),求四邊形面積的最大值,并求此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為分別為其左、右焦點(diǎn),為橢圓上一點(diǎn),且的周長(zhǎng)為.
(1)求橢圓的方程;
(2)過點(diǎn)作關(guān)于軸對(duì)稱的兩條不同的直線,若直線交橢圓于一點(diǎn),直線交橢圓于一點(diǎn),證明:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, , .
(1)當(dāng)時(shí),試比較與的大小關(guān)系;
(2)猜想與的大小關(guān)系,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)和橢圓. 直線與橢圓交于不同的兩點(diǎn).
(Ⅰ) 求橢圓的離心率;
(Ⅱ) 當(dāng)時(shí),求的面積;
(Ⅲ)設(shè)直線與橢圓的另一個(gè)交點(diǎn)為,當(dāng)為中點(diǎn)時(shí),求的值 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別為、,過的直線交橢圓于,兩點(diǎn),若橢圓的離心率為,的周長(zhǎng)為16.
(1)求橢圓的方程;
(2)設(shè)不經(jīng)過橢圓的中心而平行于弦的直線交橢圓于點(diǎn),,設(shè)弦,的中點(diǎn)分別為,.證明:,,三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)的切線方程為.
(1)求實(shí)數(shù)的值,并求的極值.
(2)是否存在,使得對(duì)任意恒成立?若存在,求出的最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓兩焦點(diǎn),并經(jīng)過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為橢圓上關(guān)于軸對(duì)稱的不同兩點(diǎn),為軸上兩點(diǎn),且,證明:直線的交點(diǎn)仍在橢圓上;
(3)你能否將(2)推廣到一般橢圓中?寫出你的結(jié)論即可.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com